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Arithmetic geometry arose as a beautiful and powerful the-
ory unifying geometry and number theory, formalizing
striking analogies between them in a way that allowed
tools, results, and intuition of each to be transported to
the other—a notable example of this is the proof of the
centuries-old problem, Fermat’s Last Theorem. This the-
ory provides a geometric viewpoint of objects over fields
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of prime characteristic 𝑝, like finite fields. Decades after
these ideas were formalized, characteristic 𝑝 arithmetic ge-
ometry is rapidly expanding to include work in the vibrant
young fields of arithmetic dynamics and derived algebraic
geometry.

Fields of positive characteristic 𝑝 have a fundamentally
distinct flavor from the classical setting of fields of charac-
teristic 0. In addition, having to let go of the archimedean
framework requires a radically different geometric intuition.
Working in characteristic𝑝 therefore comeswith additional
challenges, but there are also additional tools and struc-
ture that can be exploited, which have led to remarkable
results. In some instances these results even carry over to
solve open problems in characteristic 0.

Historical overview. While number theorists had been
studying the rational numbers and other number fields us-
ing the Riemann and Dedekind zeta functions, E. Artin in
his 1921 thesis [1] first proposed an analogous theory of
zeta functions for curves over finite fields. Hasse extended
this to prove the Riemann hypothesis for elliptic curves
over finite fields. Their work further sparked the develop-
ment of the theory of function fields, as well as the theory
of algebraic varieties, by several mathematicians, includ-
ing Weil. In the 1940’s, Weil published a book [11] on
the foundations of algebraic geometry in characteristic 𝑝,
and subsequently proved the Riemann hypothesis for func-
tion fields over finite fields [12]. Moreover, in 1949, Weil
proposed conjectures on the behavior of zeta functions of
varieties over finite fields—including the Riemann
hypothesis—which came to be known as the Weil conjec-
tures [13]. The breakthroughwhich enabledGrothendieck,
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M. Artin, and Verdier to prove all but one of the Weil con-
jectures in 1964 [5] was their development of ℓ-adic coho-
mology. Building on this, the Riemann hypothesis was
eventually proven in two different ways by Deligne ([3,
1974], [4, 1980]). For more historical details, see e.g. [8].

Weil conjectures and counting points. The zeta function
𝑍𝑋(𝑇) of an algebraic variety 𝑋 over 𝔽𝑞 encompasses in-
formation about point counts over all finite extensions of
𝔽𝑞:

𝑍𝑋(𝑇) = exp(∑
𝑛≥0

#𝑋(𝔽𝑞𝑛)𝑇
𝑛

𝑛 ) .

The Weil conjectures predict that the power series 𝑍𝑋(𝑇)
is a rational function, whose zeros and poles can be de-
scribed in terms of natural group actions on the associated
étale cohomology groups. For example, when 𝑋 = ℙ1

𝔽𝑞 ,

direct calculation gives #ℙ1(𝔽𝑞𝑛) = 𝑞𝑛 + 1, and

𝑍ℙ1(𝑇) = 1
(1 − 𝑞𝑇)(1 −𝑇).

In 1954 Lang and Weil [7] proved a weaker version of
the Weil Conjectures: if 𝑋 has 𝑑 irreducible components
of maximal dimension 𝑟, then

#𝑋(𝔽𝑞𝑛) ∼ 𝑑(𝑞𝑛)𝑟 +𝑂(𝑞𝑟−1/2),

as 𝑛 goes to infinity. These Lang–Weil estimates are useful
in both directions: information either about point counts
or about the parameters 𝑟 and 𝑑 can be traded for the
other. This technique is particularly striking in combina-
tion with the technique of spreading out from characteris-
tic 0 to characteristic 𝑝: counting points on a specializa-
tion to characteristic 𝑝 can give information about dimen-
sion and irreducibility in characteristic 0!

This idea was used in recent work of Browning–Vishe
[2], building on an idea of Ellenberg–Venkatesh, to show
that certain spaces parameterizing rational curves on hy-
persurfaces over ℂ are irreducible of the expected dimen-
sion. This is a beautiful illustration of the synergy between
characteristic 0 and characteristic 𝑝 algebraic geometry.

Characteristic 𝑝 phenomena.

Example 1: Elliptic curves of unbounded rank. Another no-
table application of these modern tools is an explicit ex-
ample, due to Ulmer [10], of a family of elliptic curves
of unbounded rank defined over a function field over a fi-
nite field. The construction makes clever use of the known
cases of the Tate conjecture [9] over finite fields. The exis-
tence of such a family of elliptic curves over number fields
is a topic of heated debate amongst number theorists to-
day! Numerous heuristics have been developed about the

behavior of ranks and other fundamental invariants of el-
liptic curves.

Example 2: Automorphisms. A broad theme in mathemat-
ics is that one should study the symmetries (i.e. automor-
phisms) of an object alongside the object itself. In the sim-
plest case of an algebraic curve over ℂ, the automorphism
group varies by the topological type: it is infinite for curves
of genus 𝑔 = 0 or 1, but once 𝑔 ≥ 2, Hurwitz famously
proved that its order is at most 84(𝑔 − 1). In character-
istic 𝑝, an algebraic curve could have additional symme-
tries! For example, the projective plane curve 𝑥𝑝+1+𝑦𝑧𝑝+
𝑧𝑦𝑝 over 𝔽𝑝2 has genus 𝑝(𝑝 − 1)/2, but 𝑂(𝑝8) symme-
tries. These symmetries arise in analogy with the fact that
the unitary group PGU3(ℂ) preserves the Hermitian form
𝑄(𝑥,𝑦, 𝑧) = 𝑥 ̄𝑥 + 𝑦 ̄𝑧 + 𝑧𝑦̄, and so acts on 𝑄 = 0. Re-
placing complex conjugation with the Frobenius involu-
tion 𝑥 ↦ ̄𝑥 = 𝑥𝑝 (special to characteristic 𝑝) of 𝔽𝑝2 over
𝔽𝑝 gives rise to an action of PGU3(𝔽𝑝2) on this curve.
Example 3: Fundamental groups. An important objective of
mathematics is to classify spaces; a natural approach to
this is introducing and comparing algebraic invariants as-
sociated to a space. One important example of such an
invariant is the fundamental group, which captures infor-
mation about the geometry of a space and itsmaps to other
spaces. For a variety 𝑋 over ℂ, the topological fundamen-
tal group 𝜋1(𝑋) has a description in terms of loops on
𝑋. In particular, the line 𝔸1

ℂ has trivial 𝜋1, since it’s con-
tractible. Using an equivalent description of 𝜋1, this says
that 𝔸1

ℂ has no nontrivial unramified covers. The same
is true when we replace ℂ with any other characteristic 0
field. In characteristic 𝑝, the theory of étale covers gives
a direct analog 𝜋ét

1 of the topological fundamental group.
Grothendieck proved that the prime-to-𝑝 part of𝜋ét

1 is the
same as that of𝜋1 of an analogous curve over ℂ [6]. How-
ever, the 𝑝-part of 𝜋ét

1 detects that the theory of covers is
much richer in this setting. For example, over a character-
istic 𝑝 ground field, 𝜋ét

1 (𝔸1) is far from trivial; in fact, its
cardinality is huge and depends on the ground field. It
is even conjectured that 𝜋ét

1 (𝔸1
𝑘) determines the ground

field when 𝑘 is algebraically closed.

Mathematics research communities. Arithmetic geome-
try in characteristic 𝑝 lends itself to a rich and varied col-
lection of accessible problems, in topics such as isogeny
classes of abelian varieties over finite fields, Galois cov-
ers of curves and lifting problems, and arithmetic dynam-
ics. Many of these problems are existential, and can be
attacked by an explicit or computational approach. Signif-
icant progress in this setting has been made in the last year
alone, due to both recent theoretical technical innovations
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and to recent computational advances that have aided ex-
perimentation. Relatedly, there are new approaches to ex-
plicitly constructing examples exhibiting certain phenom-
ena.

We invite early-careermathematicians fromawide range
of backgrounds to continue this story at our upcoming
MRC, “Explicit Methods in Arithmetic Geometry in Char-
acteristic 𝑝.”
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