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Abstract. Let C be a hyperelliptic curve of genus g over the fraction field K of a discrete
valuation ring R. Assume that the residue field k of R is perfect and that char k > 2g+1. Let
S = Spec R. Let X be the minimal proper regular model of C over S. Let Art(C/K) denote
the Artin conductor of the S-scheme X and let ν(∆C) denote the minimal discriminant of C.
We prove that −Art(C/K) ≤ ν(∆C). The key ingredients are a combinatorial refinement
of the discriminant introduced in this paper (called the metric tree) and a recent refinement
of Abhyankar’s inversion formula for studying plane curve singularities. We also prove
combinatorial restrictions for −Art(C/K) = ν(∆C).

1. Introduction

The goal of this paper is to prove an inequality between two measures of degeneracy for a
family of hyperelliptic curves, namely the Artin conductor and the minimal discriminant. Let
(R, ν) be a discrete valuation ring with perfect residue field k of of odd characteristic. Let K
be the fraction field of R. Let C be a smooth, projective, geometrically integral curve of genus
g ≥ 1 defined overK. Let S = SpecR. LetX be a proper, flat, regular S-scheme with generic
fiber C. The Artin conductor of the model X is given by Art(X/S) = χ(XK)− χ(Xk)− δ,
where χ is the étale Euler-characteristic and δ is the Swan conductor associated to the `-
adic representation Gal(K/K)→ AutQ`(H

1
et(XK ,Q`)) (` 6= char k). The Artin conductor is

a measure of degeneracy of the model X; it is a non-positive integer that is zero precisely
when either X/S is smooth or when g = 1 and (Xk)red is smooth. Let Art(C/K) denote the
Artin conductor of the minimal proper regular model of C over S.

For hyperelliptic curves, there is another measure of degeneracy defined in terms of minimal
Weierstrass equations. Assume that C is hyperelliptic. An integral Weierstrass equation for
C is an equation of the form y2 = f(x) with f(x) ∈ R[x], such that C is birational to the
plane curve given by this equation. The discriminant of such an equation is defined to be the
non-negative integer ν(∆f ), where ∆f is the discriminant of f , thought of as a polynomial
of degree 2ddeg(f)/2e. A minimal Weierstrass equation is an equation for which the integer
ν(∆f ) is as small as possible amongst all integral equations, and the corresponding integer
ν(∆C) is called the minimal discriminant of C.

When g = 1, we have −Art(C/K) = ν(∆C) by the Ogg-Saito formula [Sai88, p.156,
Corollary 2]. When g = 2, Liu [Liu94, p.52, Theoreme 1 and p.53, Theoreme 2] shows
that −Art(C/K) ≤ ν(∆C). In the author’s thesis [Sri15], Liu’s inequality was extended
to hyperelliptic curves of arbitrary genus assuming that the roots of f are defined over an
unramified extension of K. In this paper, we extend [Sri15] assuming only that char(k) >
2g + 1 (in particular, the roots of f are defined over a tame extension of K).
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Theorem 1.1. Let C be a hyperelliptic curve of genus g ≥ 1 over a discretely valued field K
with ring of integers R and perfect residue field k such that char(k) > 2g + 1. Let ν(∆C) be
the minimal discriminant of C and let Art(C/K) denote the Artin conductor of the minimal
regular model of C. Then

−Art(C/K) ≤ ν(∆C).

1.2. Combinatorial criterion for equality. The techniques in this paper enable us to give
a purely combinatorial explanation for why the Ogg-Saito conductor-discriminant equality
in genus 1 is sometimes only an inequality when g ≥ 2. The reason for bad reduction in
hyperelliptic curves in odd residue characteristic is because distinct roots of the polynomial f
reduce to the same element in the residue field. Roughly, the difference in the two invariants
comes about because the discriminant keeps track of not just the collision of roots, but how
many roots collide at the same point. However, if we have a large number of roots coming
together to order 1 that can still be separated with a single blowup, then the conductor is
still small. The inequality between the conductor and the discriminant in this case boils
down to the inequality 2 ≤ n(n − 1) for any integer n ≥ 2. This analysis is accurate if the
roots of f are rational and we have an even number of roots coming together, and every pair
comes together to order 1.

More generally, even when the roots of f are non-rational, for every closed point P in
div(f) on P1

R, one can look at the multiplicity of f in the local ring at P – this is a positive
integer that can be viewed as a weighted sum wtP of the roots of f specializing to P . (See
Definition 6.1 and Lemma 6.2). For example, for P as above, we have wtP = 1 exactly when
f does not vanish identically along the special fiber and exactly one irreducible factor of f
specializes to P , and this factor is either linear or a translate of an Eisenstein polynomial.
For equality to hold, it is necessary that all points P in div(f) have wtP ≤ 3. More precisely,
for every polynomial f ∈ R[x] (for example, a polynomial f such that ν(∆f ) = ν(∆C)),
our techniques produce an explicit proper regular model Xf for the hyperelliptic curve with
equation y2 = f(x), which is sometimes the minimal model, and we can show

Theorem 1.3. −(Art(Xf )) = ν(∆f ) if and only if every P in div(f) is either a good weight
3 point (see Definition 6.2) or has wtP ≤ 2. In particular, we have −(Art(Xf )) < ν(∆f ) if
there exists P in div(f) with wtP ≥ 4.

We also prove the following corollaries to this theorem in Section 10, by showing that
the conditions in this theorem are automatically satisfied in the setting of the minimal
Weierstrass equation for an elliptic curve, thus explaining the Ogg-Saito equality in genus 1
and inequality in higher genus.

Corollary 1.4. Assume that deg(f) is 3 and that y2 = f(x) is a minimal Weierstrass
equation. Then −Art(Xf ) = ν(∆f ).

Corollary 1.5. We have strict inequality −(Art(Xf )) < ν(∆f ) whenever four or more
irreducible factors of f specialize to the same point in the standard model P1

R (“non-generic
collision of roots”).

Using Theorem 1.3, we are able to produce examples of hyperelliptic curves with bad
reduction in every genus where we have equality and inequality.

Example. Let a1, a2, . . . , a2g−1 be any 2g−1 elements of R with pairwise distinct reductions
in k.
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• If C is the genus g hyperelliptic curve given by y2 = x2g+2−t, then we have −(Art(C/K)) =
ν(∆C).
• Let C be the genus g hyperelliptic curve y2 = (x − a1)(x − a1 + t)(x − a2)(x − a2 +
t) . . . (x− ag)(x− ag + t). Then −(Art(C/K)) = ν(∆C).
• Let C be the hyperelliptic curve y2 = (x − a1)(x − a1 + t)(x − a1 − t)(x − a2)(x −
a3) . . . (x− a2g−1). Then −(Art(C/K)) < ν(∆C).

When g ≥ 2, since both the Artin conductor and the minimal discriminant are nonzero
precisely when the curve C has bad reduction, one might also ask if there is an inequality
between the conductor and the discriminant in the other direction. The difference between
the two invariants can be as large as a quadratic function in g. (See Example 10.9.)

For our explicit proper regular possibly non minimal model Xf for the hyperelliptic curve,
we can show ν(∆C) ≤ (g + 1)(2g + 1)(−Art(Xf )). (See Remark 10.10.) An analogous
inequality with a different notion of discriminant is proven in the semistable case in [Mau03,
Théorème 1.1], by proving effectivity of a certain Cartier divisor on a moduli space. This
leads us to the following question which we do not answer in this paper (since we have not
analyzed how many contractible components our model Xf might have).

Question 1.1. Is there an explicit quadratic function c(g) such that ν(∆C) ≤ c(g)(−Art(C/K))?

1.6. Summary of earlier work on conductor-discriminant inequalities. In genus 1,
the proof of the Ogg-Saito formula used the explicit classification of special fibers of minimal
regular models of genus 1 curves. In genus 2, [Liu94] defines another discriminant that is spe-
cific to genus 2 curves, and compares both the Artin conductor and the minimal discriminant
(our ν(∆C), which Liu calls ∆0) to this third discriminant (which Liu calls ∆min). This third
discriminant ∆min is sandwiched between the Artin conductor and the minimal discriminant
and is defined using a possibly non-integral Weierstrass equation such that the associated
differentials generate the R-lattice of global sections of the relative dualizing sheaf of the
minimal regular model. It does not directly generalize to higher genus hyperelliptic curves
(but see [Liu94, Definition 1, Remarque 9] for a related conductor-discriminant question).
Liu even provides an explicit formula for the difference between the Artin conductor and
both ∆0 and ∆min that can be described in terms of the combinatorics of the special fiber
of the minimal regular model (of which there are already over 120 types!).

Since these invariants are insensitive to unramified base extensions, we may assume that
k is algebraically closed. We also fix a polynomial f ∈ R[x] such that ν(∆C) = ν(∆f ). The
common starting point of [Sri15] and this paper is to produce an explicit regular model Xf

admitting a finite degree 2 map to an explicit regular model Y f of P1
K . It suffices to show

−Art(Xf ) ≤ ν(∆f ), since −Art(C/K) ≤ −Art(Xf ). The model Y f , which we call the good
embedded resolution of the pair (P1

R, div(f)), is a blowup of P1
R on which all components

of div(f) of odd multiplicity are regular and disjoint (Definition 3.2). The normalization of
Y f in the function field of the hyperelliptic curve Xf is an explicit regular model for C. In
[Sri15], the assumption that the roots of f are defined over K ensures that all irreducible
components of div(f) are already regular in the standard model P1

R, and we only have to deal
with making the odd multiplicity components of div(f) disjoint. The conductor-discriminant
inequality for f is then proven by decomposing both −Art(Xf ) and ν(∆f ) into local terms
indexed by the vertices of the dual tree of Y f . When the roots of f are not defined over
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K, this analysis is much more involved, since we now need to carry out explicit embedded
resolution of div(f) in P1

R.

1.7. Outline of this paper.

1.7.1. Explicit regular models. In Section 4, we show that we may reduce to the case R =
k[[t]] by producing a polynomial f ] ∈ k[[t]][x] such that ν(∆f ) = ν(∆]

f ) and −Art(Xf ) =

−Art(Xf]). Our assumption that char(k) > deg(f) ensures that the roots of f are defined
over a tame cyclic Galois extension. This allows us to write down Newton-Puiseux expansions
for the roots of f with bounded denominators. The continued fraction expansions of a
finite set of special exponents in these Newton-Puiseux expansions, called the characteristic
exponents (see Definition 8.11) control the combinatorics of the special fiber of the model Y f ,
and in turn −Art(Xf ). The dual graphs of these embedded resolutions can be computed
using the explicit resolution algorithm described in [Wal04, Theorem 3.3.1,Lemma 3.6.1].
For the rest of the paper, it is assumed that R = k[[t]].

1.7.2. An inductive argument and the base case. The proof of the conductor-discriminant
inequality is an induction on the ordered pair of integers (deg(f), ν(∆f )). The base case of
this induction is when f factors as a product of linear and shifted Eisenstein polynomials
with distinct specializations in P1

R. Here Y f is P1
R and Xf is the Weierstrass model, which

is regular in this case. A direct computation then shows that we have −Art(Xf ) = ν(∆f )
(Section 5). When f is not of this form, we study the equation of the strict transform of f
after a blowup of P1

R at the images of the nonregular points of the Weierstrass model. We
use this equation along with a change of variables to define a set of replacement polynomi-
als for the polynomial f (Definition 6.4). The key calculation is to compare the conductor
(and respectively the discriminant) of the polynomial f to the sum of the conductors (and
respectively the discriminants) of its replacement polynomials. We show that the change
on the conductor side is less than or equal to the change in the discriminant side (Theo-
rem 6.7). Adding the conductor-discriminant inequalities for the replacement polynomials
(which we know from the induction hypothesis) to the key inductive inequality then proves
the conductor-discriminant inequality for f .

Section 6 is devoted to defining the replacement polynomials.

1.7.3. Change on the conductor side during induction. In Section 7, we use the
inclusion-exclusion property of the Euler-characteristic along with the Riemann-Hurwitz
formula to compute the difference between the conductor of f and the sum of the conductors
of its replacement polynomials. This difference is the left hand side of the key inductive
inequality.

1.7.4. The metric tree. The right hand side of the key inductive inequality, which is the
difference between the discriminant of f and the sum of the discriminants of its replacement
polynomials, is harder to compute. For this, we first replace the discriminant f by a combi-
natorial refinement of it, which we call the metric tree of f . The metric tree is introduced
in Section 8. See Figure 1 for an example.

The metric tree keeps track of the relative t-adic distances between all pairs of roots of
f . It is easy to recover the discriminant of f from its metric tree (Lemma 8.3). The Galois
action on the roots of f extends to a Galois action on the whole metric tree. For example, if
f is irreducible and its roots have valuation a/b < 1 with gcd(a, b) = 1, then the metric tree
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t2/3 + t5/6, t2/3 − t5/6,
ωt2/3 − ω2t5/6, ωt2/3 + ω2t5/6,
ω2t2/3 + ωt5/6, ω2t2/3 − ωt5/6

t2/3 + t5/6,
t2/3 − t5/6

ωt2/3 − ω2t5/6,
ωt2/3 + ω2t5/6

ω2t2/3 + ωt5/6,
ω2t2/3 − ωt5/6

ζ

ωt2/3 + ω2t5/6

ωt2/3 − ω2t5/6

t2/3 + t5/6t2/3 − t5/6

5/6− 2/3

ω2t2/3 + ωt5/6

ω2t2/3 − ωt5/6
2/3

Figure 1: Metric tree of the minimal polynomial of t2/3 + t5/6 over C((t))

of f has b identical subtrees glued onto one end of a segment of length a/b, as in Figure 1
and the Galois action permutes these subtrees, keeping points on the line segment fixed.

1.7.5. The change on the discriminant side and Abhyankar’s inversion formula.
We exploit this symmetry of the metric tree, along with a refinement of Abhyankar’s inversion
formula from [GBGPPP17] to describe the metric tree of the replacement polynomials from
the metric tree of f (Theorem 8.5 and Theorem 8.17). Continuing with the same setup as
before, if f is irreducible with roots of valuation a/b, its replacement polynomial g is also
irreducible with deg(g) = deg(f)a/b. Furthermore, Abhyankar’s inversion formula can be
used to prove that the metric tree of g is obtained by gluing a identical subtrees to one
end of a line segment of length b/a − 1. The subtrees in the replacement polynomial are
identical to the subtrees in f , except that the metric gets scaled by a factor of b/a. When f
has multiple irreducible factors, we compute the replacement polynomials of each irreducible
factor separately and use a recent refinement of the inversion formula to show how to glue
them together appropriately. Once we have the metric tree of the replacement polynomial, we
can use Lemma 8.3 once again to compute the discriminants of the replacement polynomials,
and in particular the difference in the discriminant of f and its replacement polynomials
(Section 9).

1.7.6. Termination of induction. Finally, in Section 10, we put together the results of
the previous three sections to prove the key inductive inequality (Theorem 6.7). We prove
that the induction terminates (Corollary 10.3), and study the exact combinatorial restrictions
needed for equality to hold (Theorem 1.3).

1.8. Related work. In the semistable case, work of Kausz [Kau99] (when p 6= 2) and
Maugeais [Mau03] (all p) compares the Artin conductor to yet another notion of discriminant.

Concurrent to and independent of our work, the authors of [DDMM18] introduced the
cluster picture of a polynomial f , which is the same as the metric tree introduced in this
paper. The authors compute many arithmetic invariants attached to hyperelliptic curves
in terms of the cluster picture of f in the semistable case. In contrast, our results do not
require the semistability hypothesis.
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1/6

2/3

1/4 = (1/6) · (3/2)

1/2 = (3/2)− 1

  

1/2 = (1/4) · (2/1)

1 = (2/1)− 1

Figure 2: Metric tree of an irreducible f  Metric tree of its replacement polynomial

In [Koh19], Kohls compares the conductor exponent ϕ for the Galois representation
Gal(K/K) → AutQ`(H

1
et(XK ,Q`)) with the minimal discriminant of superelliptic curves,

by studying the Galois action on the special fiber of the semistable model as in [BW17].
In [BKSW19], the authors define minimal discriminants of Picard curves (degree 3 cyclic
covers of P1

K) and compare the conductor exponent and the minimal discriminant for such
curves. Our results are stronger than these results in the case of hyperelliptic curves, since
−Art(C/K) = n − 1 + ϕ, where n is the number of irreducible components in the special
fiber of the minimal proper regular model of C.

In [FN19], Faraggi and Nowell describe the special fibers of snc models of hyperelliptic
curves when the splitting field of f is tamely ramified. Their approach is to resolve the tame
quotient singularities that show up when you take the quotient of the semistable model
(which they explicitly describe using the cluster picture/metric tree) by the Galois action.
We cannot directly use their constructions, since the conductor-discriminant inequality does
not hold with the minimal snc-model in place of the minimal regular model. This inequality
already fails in genus 1 when the minimal regular model does not coincide with the minimal
snc-model.

The conductor-discriminant inequality also holds in the wild case when δ 6= 0 in genus 1
and genus 2 due to Ogg, Saito and Liu. In [OS19], in joint work with Andrew Obus, we
extend the conductor-discriminant inequality to all hyperelliptic curves when char(k) 6= 2,
using the so-called “Mac Lane valuations”. These give an explicit way of describing the
entire regular resolution directly in terms of lower degree approximations of the roots of f ,
without having to write down Newton-Puiseux expansions of the roots of f first. Our results
in [OS19] reprove the results in this paper using different techniques and also covers wild
ramification. However, the combinatorial criterion for equality −(Art(Xf )) = ν(∆f ) is more
transparent and easier to analyze using the techniques in this paper, since we analyze the
the difference in the two sides of the inequality after each blow up instead of writing the
entire regular model all at once. We also hope that the inductive argument on metric trees
would be of independent interest to the more combinatorially-inclined reader.

1.9. Notation. The invariants −Art(X/S) and ν(∆) are unchanged when we extend scalars
to the strict Henselization. So from the very beginning, we let R be a complete discrete
valuation ring with algebraically closed residue field k. Assume that char k 6= 2. Let K be
the fraction field of R and K be a separable closure of K. Let ν : K → Q ∪ {∞} be the
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unique extension of the discrete valuation on K to K. Let t ∈ R be a uniformizer; ν(t) = 1.
Let S = Spec R. Let C be a hyperelliptic curve over K with genus g ≥ 2.

Let y2 − f(x) = 0 be an integral Weierstrass equation for C, i.e., f(x) ∈ R[x] and C
is birational to the plane curve given by this equation. The discriminant of a Weierstrass
equation df equals the discriminant of f considered as a polynomial of degree 2g + 2. A
minimal Weierstrass equation for C is a Weierstrass equation for C such that ν(df ) is as
small as possible amongst all integral Weierstrass equations for C. The minimal discriminant
ν(∆C) of C equals ν(df ) for a minimal Weierstrass equation y2 − f(x) for C. Fix such an
equation.

For any proper regular curve Z over S, we will denote the special fiber of Z by Zs, the
generic fiber by Zη and the geometric generic fiber by Zη. We will denote the function field
of an integral scheme Z by K(Z), the local ring at a point z of a scheme Z by Oz and the
unique maximal ideal in Oz by mz. For f ∈ K(Z), we will denote the divisor of f by div(f)
and the divisor of zeroes of f by div0(f). The reduced scheme attached to a scheme Z will
be denoted Zred. If Z is a smooth divisor on a smooth scheme Z ′, then we will denote the
corresponding discrete valuation on K(Z ′) by νZ .

We will let P1,Berk
L denote the Berkovich projective line over the field L, and let ζ denote

its Gauss point.

2. The Artin conductor/Deligne discriminant

Let X be an integral proper S-scheme of relative dimension 1. Fix ` 6= char k. Let χ denote
the compactly-supported Euler-characteristic for the `-adic étale topology. Let δ be the
Swan conductor associated to the `-adic representation Gal (K/K) → AutQ` (H1

et(Xη,Q`))
(` 6= char k) [Sai88, p.153].

Definition 2.1. The (negative of) the Artin conductor of X, or alternately, the Deligne
discriminant of X, denoted −Art(X/S) is given by

−Art(X/S) := χ(Xs)− χ(Xη) + δ.

Let Y be a regular integral 2-dimensional S-scheme and let f be a rational function on
Y that is not a square. Assume that the residue field at any closed point of Y is not of
characteristic 2. Let X be the normalization of Y in K(Y )(

√
f). Let div(f) =

∑
i∈I miΓi,

and let B =
∑

mi odd Γi.

Lemma 2.1. Keep the notation from the paragraph above. Assume char(k) 6= 2.

−Art(X/S) = 2(χ(Ys)− χ(Yη))− (χ(Bs)− χ(Bη)) + δ.

If Xη is a hyperelliptic curve with equation y2 = f(x) and char(k) > deg(f), then δ = 0.

Proof. This is the Riemann-Hurwitz formula applied to the finite branched tame degree 2
covers Xη → Yη and Xs → Ys. Let R be the inverse image of B in X; then the map
V := X \ R → U := Y \ B is étale. Since χ(V ) = dχ(U) for any tame étale degree 2
cover V → U of varieties over an algebraically closed field of characteristic 6= ` and since
char(k) 6= 2, we have χ(Xs \ Rs) = 2χ(Ys \ Bs) and χ(Xη \ Rη) = 2χ(Yη \ Bη). Since k is
algebraically closed and `-adic étale cohomology satisfies the same dimension and exactness
axioms as singular cohomology, the proof of the formula now follows from excision. If Xη is
hyperelliptic and char(k) > deg(f), then char(k) > 2g + 1 and hence δ = 0. �
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3. An explicit regular model

In this section, we construct a good regular model of a hyperelliptic curve with minimal
Weierstrass equation y2 = f(x) by first constructing a suitable embedded resolution of the
pair (P1

R, div(f)) (Lemma 3.1), and then taking its normalization in a degree 2 extension
of its function field (Lemma 3.3). We also prove a lemma about when two such embedded
resolutions of pairs (Y,Γ) and (Y ′,Γ′) are isomorphic (Lemma 3.2), which we will use in
Section 6 for inductive arguments.

Definition 3.1. Given a regular arithmetic surface Y and a Weil divisor Γ =
∑
miΓi, define

the underlying odd divisor Γodd by Γodd :=
∑

miodd miΓi .

Definition 3.2. Let Y → S be a regular arithmetic surface, let f ∈ K(Y ). A good embedded
resolution of the pair (Y, div(f)) is another regular arithmetic surface Y ′ such that Y ′ fits
in a sequence Y ′ := Yn → Yn−1 · · · → Y1 → Y0 := Y , where each Yi is obtained by blowing
up the nonregular points of the closed subscheme [div(f)odd]red on Yi−1, and such that the
divisor [div(f)odd]red on Y ′ is regular.

Lemma 3.1.

(a) A good embedded resolution exists for every pair (Y, div(f) as above.
(b) If Y ′ → Y is a good embedded resolution of div(f) and div(f)odd =

∑
miΓi on Y ′, then

Γi is regular for every i and Γi and Γj do not intersect if i 6= j.

Proof.

(a) Since R is assumed to be a complete discrete valuation ring and therefore excellent,
we may use the results of [Liu02, Chapter 9]. The construction of Y ′ is analogous
to the proof of embedded resolution in [Liu02, p.404, Chapter 9, Theorem 2.26] and
we sketch the details. We first blow up closed points of Y to make the irreducible
components of div(f)odd regular as in [Liu02, p.405, Chapter 9, Lemma 2.32], and
then do some further blowups to separate components of div(f)odd ⊂ Y as in the
construction of a normal crossings model in [Liu02, p.404, Chapter 9, Theorem 2.26].
The main difference is that we do not care about making horizontal components of
div(f)odd transverse to exceptional curves that appear with even multiplicity. Once
we get to the point that at most two irreducible components Γ and Γ′ of div(f)odd pass
through any point P , then one further blowup at P produces a curve that appears
with even multiplicity in div(f) and separates Γ and Γ′ ([Sri15, Lemma 2.3]).

(b) The reduced curve [div(f)odd]red on the regular surface Y ′ is locally given by the
vanishing of a single function by [Liu02, p.117, Chapter 4, Proposition 1.12]. By
[Liu02, p.378, Chapter 9, Proposition 1.8], the zero locus of a single function on
a regular surface is regular at a point P if and only if the function is not in m2

P .
Putting these two facts together, it follows that [div(f)odd]red is regular if and only if
its irreducible components are regular and pairwise disjoint. �

Remark 3.3. From the local nature of the construction, we see that we may also talk about
the good embedded resolution of a pair (O, div(f)), where O is a regular 2-dimensional
R-algebra and f ∈ O.

We record the following corollary which will be useful for inductive arguments in Section 6.
8



Corollary 3.2. Let O be a regular 2-dimensional k-algebra. Let u, q, g, h ∈ O be such that
g = uq2h and u is a unit in O. Then the good embedded resolutions of the pairs (O, div(g))
and (O, div(h)) are isomorphic. Furthermore div(g)odd = div(h)odd on the resolution.

Proof. Since g = uq2h implies that div(g)odd = div(h)odd, it follows from Definition 3.2 and
Remark 3.3 that the good embedded resolutions of the pairs (O, div(g)) and (O, div(h)) are
isomorphic. �

Definition 3.4. Let Y f be a good embedded resolution of the pair (P1
R, div(f)), and let

the branch locus Bf := div(f)odd on Y f . Define Xf to be the normalization of Y f in
K(x)[y]/(y2 − f(x)).

Lemma 3.3. The model Xf is regular.

Proof. This follows from [Sri15][Lemma 2.1]. �

4. Reduction to the equicharacteristic case

The goal of this section is to show that we may assume R = k[[t]] without any loss of
generality. Fix a (set-theoretic) section k → R of the natural surjective reduction map R→ k
sending 0 to 0. (If k ⊂ R, fix the identity section.) Elements in the image of this section will
be called lifts. Let n be a positive integer coprime to p. Every element a ∈ R[t1/n], has a
unique expansion of the form a =

∑
m∈Z≥0

amt
m/n (the Newton-Puiseux expansion) such that

every am is a lift.
We will let ν denote the discrete valuation on both

⋃
n>1,(n,char k)=1R[t1/n] and

⋃
n>1,(n,char k)=1 k[[t1/n]].

If a =
∑

m∈Z≥0
amt

m/n is the Newton-Puiseux/t-adic expansion of an element in one of these

rings, then ν(a) = m/n, where m is the smallest integer with am 6= 0.

Proposition 4.1. Let f ∈ R[x] be a separable polynomial with deg f < char k if char k > 0.
Then there exists a separable polynomial f ] ∈ k[[t]][x] of the same degree with the following
properties.

(a) There is a bijection of the roots {α1, . . . , αr} of f with the roots {β1, β2, . . . , βr} of f ]

that satisfy
• ν(αi) = ν(βi) for all i, and
• ν(αi − αi′) = ν(βi − βi′) for all i 6= i′.

In particular ∆f = ∆f].
(b) The special fibers of the models Xf and Xf] from Definition 3.4 are isomorphic. In

particular Art(Xf ) = Art(Xf]).

Proof. Since char k > deg(f) and k is algebraically closed, the splitting field of f is a to-
tally ramified tame extension of K, and therefore cyclic [Ser79, Chapter IV,§ 2,Proposi-
tion 7,Corollary 2]. Since K is complete and k is algebraically closed, by Kummer theory, we
may further assume that this splitting field equals K(t1/n) for some integer n ≥ 1. Since f is
monic and integral, it follows that all roots of f are contained in R[t1/n]. Let g1, g2, . . . , gl be
the irreducible factors of f , and let f = utbg1 . . . gl for some b ∈ {0, 1} and unit u ∈ R. For
each irreducible factor gj, pick a root αi of gj and write down its Newton-Puiseux expansion
αi :=

∑
m∈Z≥0

aimt
m/n. Since f is separable, there exists an integer M such that

• for every i, we have deg gi = lcm(denom(m/n) | m ≤M,aim 6= 0), where denom(m/n)
is the denominator of the rational number m/n when written in lowest form.
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• whenever i 6= j, we have αi mod tM/n 6= αj mod tM/n in R[t1/n].

Define

g]i := The minimal polynomial of
M∑
m=0

aimt
m/n in k[[t]][x]

f ] := tb
l∏

i=1

g]i .

(a) For every i with 1 ≤ i ≤ l, fix a primitive (deg gi)
th root of unity ζi ∈ R (deg gi < deg f

and is therefore prime to char k if char k > 0). Since the splitting field of gi is K(t1/deg gi)
with Galois group generated by t1/ deg gi 7→ ζit

1/ deg gi , every root of gi has the form∑
m∈Z≥0

ζjmi aimt
m/n for a unique j such that 1 ≤ j ≤ deg gi. (This may not be the

Newton-Puiseux expansion of the element using the chosen lifts, since we only fixed
a set-theoretic section k → R, but that is okay since we do not need this for what
follows.) Since the splitting field of g]i is also k((t1/ deg gi)), it follows that every root of

g]i has the form
∑

m∈Z≥0
ζjmi aimt

m/n for a unique j such that 1 ≤ j ≤ deg gi. Extend

the list {α1, . . . , αl} to a complete set of roots of f , and set βi =
∑

m∈Z≥0
ζjmi aimt

m/n if

αi =
∑

m∈Z≥0
ζjmi aimt

m/n. Since the ζi are units in R, it follows that for any two indices

i, j, we have ζjmi aim = 0 if and only if ζjmi aim = 0. This implies that

ν(
∑

m∈Z≥0

ζjmi aimt
m/n) = min(m/n | ζjmi aim 6= 0) = min(m/n | ζjmi aim 6= 0) = ν(

∑
m∈Z≥0

ζjmi aimt
m/n).

Similarly, if αi =
∑

m∈Z≥0
ζjmi aimt

m/n and αi′ =
∑

m∈Z≥0
ζjmi′ a

i′
mt

m/n, then ν(αi − αi′) =

min(m/n | ζjmi aim 6= ζj
′m
i′ ai

′
m). Since ζ 6= 1 for any root of unity ζ 6= 1 of order

prime to char k, it follows that ζjmi aim = ζj
′m
i′ ai

′
m if and only if ζjmi aim = ζj

′m
i′ ai′m for

any choice of indices m, i, i′, j, j′. This shows ν(αi−αi′) = ν(βi− βi′) since ν(βi− βi′) =

min(m/n | ζjmi aim 6= ζj
′m
i′ ai′m). Finally, we have

∆f =
∑
i 6=i′

ν(αi − αi′) =
∑
i 6=i′

ν(βi − βi′) = ∆f] .

(b) Since f and f ] have the same degree, the generic fibers of Xf and Xf] have the same
`-adic Euler characteristic (= 4−deg f or 3−deg f depending on whether deg f is even or
odd). It suffices to show that the same is true of the special fibers. Since char k > deg(f)
if char k > 0, it follows that δ = 0. The Riemann-Hurwitz formula Lemma 2.1 implies
that it is enough to prove the following three things.
• The special fibers of Yf and Yf] are isomorphic.
• The order of vanishing of f along any irreducible component of (Yf )s is equal to the

order of vanishing of f ] along the corresponding irreducible component of (Yf])s.
• There is a bijection between the horizontal components of div(f) and those of div(f ])

such that the points where these divisors intersect the special fiber also correspond
under the above isomorphism, and the multiplicities of f and f ] in the local ring at
the point of intersection are also equal.
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Let Y ′f and Y ′
f]

be the minimal surfaces with a map to P1
R and P1

k[[t]] respectively such

that all horizontal components of div(f) and div(f ]) respectively are regular. The special
fibers of Y ′f and Y ′

f]
, and the incidence of the horizontal components with the special

fiber are algorithmically determined by the exponents in the Newton-Puiseux expansions
of roots of f and f ], and the positions where any two such Newton-Puiseux expansions
differ – this can be seen by using the explicit resolution algorithm as described in [Wal04,
Theorem 3.3.1,Lemma 3.6.1] using the continued fraction expansions of the exponents
appearing in the expansions. For instance, the above described algorithm in the case
when f is irreducible shows that the dual graph of the minimal resolution of div(f) is
a tree that consists of a single horizontal main segment, with finitely vertical segments
attached at specified vertices that are determined by the characteristic exponents of the
expansion of a root, i.e., the ‘jump positions’ in the l.c.m. of the denominators of the
exponents of partial truncations of the Newton-Puiseux expansions (See Definition 8.11
for a definition of characteristic exponents, and [Wal04, p.61, Figure 3.5] for a picture of
a typical dual graph). (The l.c.m. of the denominators of the exponents is initialized to
be 1, and it increases to n by the time we get to the truncation of a root mod tM/n; it
stays n thereafter). The number of components in each segment of the dual graph can
likewise be determined by suitably normalized ‘Farey sequences’ of rational numbers.

The same algorithm applies in both the equicharacteristic and mixed characteristic
cases, once we are guaranteed the existence of Newton-Puiseux series with exponents of
bounded denominators. The proof even shows that the resolution is completely deter-
mined by the M -truncations of the roots of f and f ] respectively, where the integer M is
chosen as in part(a) of this Proposition. It is obtained by gluing together the embedded
resolutions of the divisors corresponding to the irreducible factors gi of f appropriately.
The gluing data is determined by the positions where the Newton-Puiseux series differ.

The explicit resolution algorithm also show that the multiplicities of the strict trans-
forms of irreducible components f at their points of incidence with the special fiber of
the blowup is determined by the exponents appearing in the Newton-Puiseux expansion
[Wal04][Proposition 4.3.8]. These multiplicities in turn determine the order of vanish-
ing of f along any component of the exceptional curve by [Liu02][Chapter 9, Proposi-
tion 2.23]. [Sri15][Lemma 2.2] can now be used to show that the additional blowups
required to separate intersecting odd vertical components to produce Yf from Y ′f , and to
produce Yf] from Y ′

f]
also coincide. This gives the required isomorphism of special fibers

of Yf and Yf] , preserving the required incidence data. �

Remark 4.1. Another way to justify these claims is using the theory of Mac Lane valuations
as in [OS19]. Mac Lane valuations give a way of “labelling” the irreducible components
that appear in the resolutions Yf and Yf] as a valuation on K(P1

K). These labels are in
terms of certain “key polynomials ϕi” and rational numbers λi, and in our case come from
the minimal polynomials of truncations of Newton-Puiseux expansions just before a jump
position, and the essential exponents at the jump position. (This is explained in [OS19,
Remark 5.26]) Since the labels for the components of Yf and Yf] can be paired up, we see
that the corresponding components are in bijective correspondence (see [OS19, Section 5.4]).
The order of vanishing of f along these components can be directly computed from the
corresponding Mac Lane labels of the irreducible components, and agree for f and f ]. The
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specialization of horizontal components are also completely determined by the Mac Lane
descriptions of these irreducible components (see [OS19, Corollary 5.4]).

This Proposition shows that we may assume R = k[[t]] for proving −Art(Xf ) ≤ ∆f

without any loss of generality. In the rest of the paper, let R = k[[t]].

5. Base case of induction

Lemma 5.1. Let g :=
∑
cix

i ∈ R[x] be a monic irreducible polynomial with deg g ≥ 2. Let
Γ := div(g). Assume that Γ intersects the special fiber of P1

R at the origin. Then Γ is regular
if and only if ν(c0) = 1.

Proof. The curve Γ has a unique closed point P corresponding to x = t = 0. The point P ∈
P1
R corresponds to a maximal ideal m in the regular local ring OP1

R,P
, and OΓ,P = OP1

R,P
/(g)

. The curve Γ is regular if and only if OΓ,P is a regular local ring, which happens if and only
if the defining equation g /∈ m2. Since deg g ≥ 2, this happens if and only if ν(c0) = 1. �

Lemma 5.2. Assume that f = ug1g2 . . . gl where u ∈ R is a unit, and the gi ∈ R[x] are
pairwise distinct monic irreducible polynomials of degree ni. Let Γi = div(gi) on P1

R. If
ni ≥ 2, assume that gi(x) = hi(x + ai) for some Eisenstein polynomial hi and for some
ai ∈ R. Assume that the Γi intersect the special fiber of P1

R at distinct points. Let Y f and
Xf be as in Definition 3.4. Then Y f = P1

R and Xf is regular, and,

−Art(Xf/S) = ν(∆f ) =
l∑

i=1

(ni − 1).

Proof. Since translation by ai is an isomorphism of P1
R, Lemma 5.1 tells us that all the Γi

are regular. Since we also assumed that the Γi intersect the special fiber of P1
R at distinct

points, it follows that Y f = P1
R, B = div(f)odd and Xf is regular by Lemma 3.3. Since we

assumed that the gi are pairwise distinct irreducible polynomials, it follows that Bη ⊂ P1
K

is
a sum of deg f or deg f +1 distinct closed points depending on whether deg f is even or odd.
Similarly, our assumption that the Γi intersect the special fiber at distinct points implies
that Bs ⊂ P1

k is a sum of l or l+ 1 distinct closed points depending on whether deg f is even

or odd. Since Y f
s = P1

k and Y f
η = P1

K
and the `-adic Euler characteristic of a closed point

over an algebraically closed field is 1, it follows that

−Art(Xf/S) = 2(χ(Y f
s )− χ(Y f

η ))− (χ(Bs)− χ(Bη))

= 2(2− 2)− (l − deg f)

=
l∑

i=1

(ni − 1).

Assume that ni ≥ 2. Since char k > deg f ≥ ni and k is algebraically closed, any root
of gi generates a tame totally ramified Kummer extension of K and ν(∆gi) = ni − 1 by
[Ser79, Chapter IV, § 1, Proposition 4]. Since the Γi intersect the special fiber Y f

s at distinct
points, it follows that

ν(∆f ) =
l∑

i=1

ν(∆gi) =
l∑

i=1

(ni − 1). �
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6. The inductive step: replacement polynomials

In Lemma 6.3 and Corollary 6.4, we first prove that the conditions in Lemma 5.2 are
in fact necessary and sufficient for regularity of the the standard Weierstrass model. In
Section 6.6, we describe an inductive proof strategy to prove −Art(Xf ) ≤ ν(∆f ), where Xf

is the regular model from Lemma 3.3.

6.1. Setup. Recall that R can be assumed to be the ring k[[t]]. Let f = utbg1g2 . . . gl be
the prime factorization of the squarefree polynomial f in R[x], where u is a unit, b ∈ {0, 1}
and the gi are pairwise distinct monic irreducible polynomials in R[x]. Let ni := deg(gi).
Let Γi be the irreducible horizontal divisor corresponding to gi in Y0 := P1

R. Let Pi be the
closed point of P1

k where Γi intersects the special fiber of Y0, and let (x− aPi) ⊂ k[x] be the
corresponding maximal ideal. Let λi := ν(gi(aPi)).

Let ∞ be the closed point at infinity on the special fiber of Y0. Let Γ∞ be the scheme-
theoretic closure in P1

R of ∞ ∈ P1
K . Let

A :=

{
{P1, P2, . . . , Pl} if deg f is even, and,

{P1, P2, . . . , Pl} ∪ {∞} if deg f is odd.

For every P in A \ {∞}, let

CP := {gi | 1 ≤ i ≤ l, Pi = P},
C<1
P := {gi ∈ CP | λi/ni < 1}, and,

C≥1
P := {gi ∈ CP | λi/ni ≥ 1}.

Note that C<1
P consists precisely of those irreducible factors specializing to P that have roots

of valuation < 1 after we move P to x = t = 0 by a change of variables, and likewise C≥1
P

are those factors whose roots have valuation ≥ 1 after a change of variables.

Definition 6.1. [Weights] Let P in A. Define

w̃tP :=

{∑
gi∈CP min(ni, λi) =

∑
gi∈C<1

P
λi +

∑
gi∈C≥1

P
ni if P 6=∞,

parity of deg(f) if P =∞.
Define the weight wtP of P to be

wtP = b+ w̃tP .

We also define the notion of good weight 3 points appearing in the statement of Theo-
rem 1.3.

Definition 6.2. P ∈ A is a good weight 3 point if b = 0,wtP = 3 and we are in one of the
following cases:

(a) the irreducible polynomials in CP specialize to at least two distinct points after a
single blow up.

(b) CP consists of two irreducible polynomials f1, f2 that specialize to the same point in
the exceptional curve EP such that min(n1, λ1) = 1 and (n2, λ2) ∈ {(2, 3), (3, 2)}.

(c) CP consists of a single irreducible polynomial f1 such that (n1, λ1) ∈ {(3, 4), (4, 3), (3, 5), (5, 3)}.

Lemma 6.2. For any P in A \ {∞}, the multiplicity µP (f) of f in the local ring of P1
R at

P is wtP .
13



Proof. Since µP (Γi) = λi if gi ∈ C<1
P and µP (Γi) = ni if gi ∈ C≥1

P , it follows that the
multiplicity µP (f) of div(f) at P is given by

µP (f) = µP (utbg1g2 . . . gl) = bµP (t) +
∑

µP (gi) = b+

 ∑
gi∈C<1

P

λi

+

 ∑
gi∈C≥1

P

ni

 . �

Let

Abad :=

{
P ∈ A

∣∣∣∣ wtP ≥ 2

}
.

Let X0 be the normalization of Y0 in K(x)(
√
f). Let π0 denote the associated finite map

X0 → Y0. Let B ⊂ Y0 be the branch locus of π0.

Lemma 6.3. Let Xsing
0 , Bsing be the (possibly empty) sets of nonregular points of X0 and B

respectively. Then Abad = Bsing = π0(Xsing
0 ).

Proof. As a Weil divisor B is the sum of the odd components of div(f), and therefore it
follows that if deg f is odd, then B = b · div(t) +

∑
Γi + Γ∞ and if deg f is even, then

B = b · div(t) +
∑

Γi.
We will first show that Bsing = Abad. Note ∞ ∈ Abad precisely when b = 1 and deg(f) is

odd. If b = 1 and deg f is odd, then ∞ lies on two different irreducible components of B,
namely div(t) and Γ∞. In this case [Liu02, p. 129, Chapter 4, Corollary 2.12] implies that
∞ is a nonregular point of B. Since div(t) and Γ∞ are both regular at ∞, and ∞ /∈ Γi for
every i, it follows that ∞ is a regular point of B in all other cases. Since B is cut out by f
at P when P 6=∞, [Liu02, p. 129, Chapter 4, Corollary 2.12] implies that P ∈ Bsing if and
only if f ∈ m2

Y0,P
, i.e, if and only if the multiplicity µP (f) ≥ 2. Lemma 6.2 now completes

the proof of Abad = Bsing.
Let P̃ ∈ X0 and π0(P̃ ) = P ∈ Y0. We will now show that P̃ ∈ Xsing

0 if and only if P ∈ Bsing.
Since Y0 is regular and π0 : X0\π−1

0 (B)→ Y0\B is étale, it follows that X0\π−1
0 (B) is regular

by [BLR90, p. 49, Proposition 9]. If P ∈ B is regular, then f /∈ m2
Y0,P

by [Liu02, p. 129,
Chapter 4, Corollary 2.12], which in turn implies that b = 0 and that P lies on a unique
irreducible component of B. By [Liu02, p. 129, Chapter 4, Corollary 2.15], it follows that
f is part of a system of parameters for Y0 at P , i.e, there exists another rational function
g such that f and g generate the maximal ideal mY0,P . Since OX0,P̃

= OY0,P [y]/(y2 − f),

it follows that the maximal ideal at P̃ ∈ R is generated by y and g, and is therefore also
regular. If P ∈ Bsing, then f ∈ m2

Y0,P
, which in turn implies that y2 − f ∈ m2

X0,P̃
. Since

OX0,P̃
= OY0,P [y]/(y2 − f), it follows that dim(mX0,P̃

/m2
X0,P̃

) ≥ dim(mY0,P/m
2
Y0,P

) + 1 = 3

and therefore P̃ is not a regular point of X0. �

Corollary 6.4. The scheme X0 is regular if and only if f satisfies the hypotheses of Lemma 5.2.

Proof. The set Abad is empty if and only if f satisfies the hypotheses of Lemma 5.2. �

Let Y f → · · · → Y1 → Y0 be the good embedded resolution of the pair (P1
R, div(f)) and

let Xf be the normalization of Y f in K(Y0)(
√
f). By Definition 3.2 Y1 is the blowup of Y0

along the closed subscheme Abad = Bsing of B. For P ∈ Abad, let EP be the exceptional
curve for the blowup Y1 → Y0 at P .
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Corollary 6.5. The order of vanishing νEP (f) of f along EP is wtP if P 6=∞ and even if
P =∞.

Proof. First assume P =∞. By Lemma 6.3, the exceptional curve EP is defined if and only
if b = 1 and deg(f) is odd. In this case, the corollary follows since∞ /∈ Γi, and µ∞(div(t)) =
µ∞(Γ∞) = 1. Now assume P 6= infty. The order of vanishing of f along EP equals the
multiplicity µP (f) of div(f) on P1

R at P . The corollary follows from Lemma 6.2. �

6.6. Outline of inductive proof strategy. We now outline an inductive strategy for
proving −Art(Xf/S) ≤ ν(∆f ); we shall henceforth refer to this inequality as the conductor-
discriminant inequality for f . We will prove the conductor-discriminant inequality for f by
induction on the ordered pair of integers (deg(f), ν(∆̃f )). The case Abad = ∅ is Lemma 5.2.

If Abad 6= ∅, for every P ∈ Abad \ {∞}, we will construct a new pair of squarefree poly-

nomials f∞P , f
6=∞
P in R[x] (see Definition 6.4). We call {f∞P | P ∈ Abad \ {∞}, deg(f∞P ) ≥

1} ∪ {f 6=∞P | P ∈ Abad \ {∞}, deg(f 6=∞P ) ≥ 1} the collection of replacement polynomials for
f . These replacement polynomials come from the equations of the strict transform of div(f)
after one blow up at P (see section 6.8). In Section 10, we prove the key inductive inequality

Theorem 6.7.
(a)

− Art(Xf/S)−

 ∑
P∈Abad\{∞}
deg(f∞P )≥1

−Art(Xf∞P /S) +
∑

P∈Abad\{∞}
deg(f 6=∞P )≥1

−Art(Xf 6=∞P /S)

 ≤
ν(∆f )−

∑
P∈Abad\{∞}
deg(f∞P )≥1

ν(∆f∞P
)−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

ν(∆f 6=∞P
).

(b) Equality holds if and only if we have wtP ∈ {2, 3} for each P ∈ Abad.
(c) The left hand side of the inequality in part(a) is nonnegative. The right hand side is

strictly positive except when b = 0,wtP = 3 for every P ∈ Abad.

We will show in Corollary 10.3 that either the degree or the discriminant decreases after
at most two such replacement steps. The induction hypothesis then gives the conductor-
discriminant inequality for the replacement polynomials of f . Adding all these inequalities
to the one in Theorem 6.7 then proves the conductor-discriminant inequality for f . In
Section 10, we also prove Theorem 1.3, by analyzing when the condition for equality in
Theorem 6.7 holds for f and for all its replacement polynomials.

The rest of this section is devoted to defining the main objects for the inductive step, the
replacement polynomials.

6.8. Replacement polynomials f∞P and f 6=∞P and equations for the strict transform
of div(gi). In this section, we prove Lemma 6.10 which gives an explicit equation for the strict
transform of the irreducible components of div(f) passing through a given P ∈ Abad after
one blowup. We will use these equations along with the Weierstrass preparation theorem
and a change of variables to define the replacement polynomials mentioned in the outline
above (Definition 6.4).
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6.8.1. Notation. Let f, gi, b, aPi , λi, ni, Y0, X0, CP , C
<1
P , C≥1

P be as in subsection 6.1. Fix P ∈
Abad \ {∞}. Let Y1 → Y0 be the blowup of Y0 := P1

R at Abad, and let E be the exceptional
curve for the blowup at P , and let H be the strict transform of the divisor of zeroes of
gi. Let Q ∈ (Y1)s(k) be the point where E meets the rest of (Y1)s. By replacing gi(x) by
g̃i(x) := gi(x + aPi), we may assume that the point P corresponds to the origin x = t = 0
on the special fiber of Y0. Since g̃i is irreducible, all its roots in K have valuation λi/ni. Let
Pi ∈ (Y1)s(k) be the intersection Pi := H ∩ E. We omit the proof of the following lemma.

Lemma 6.9. If λi/ni ≥ 1 (or equivalently, if i ∈ C≥1
P ), then Pi 6= Q and the ideal mPi of

functions on Y1 vanishing at Pi is generated by x
t
− c and t for some c ∈ R. If λi/ni < 1 (or

equivalently, if i ∈ C<1
P ), then Pi = Q, and the ideal mQ is generated by t

x
and x.

Definition 6.3. Define

g̃new
i :=

{
g̃i/x

λi if i ∈ C<1
P

g̃i/t
ni if i ∈ C≥1

P .

Lemma 6.10. The strict transform H of the divisor of zeroes of g̃i is cut out by g̃new
i in the

local ring OPi and νE(g̃new
i ) = 0. If i ∈ C≥1

P , then g̃i/x
ni is a unit in the local ring OQ.

Proof. If we let µP (g̃i) denote the multiplicity at P of div(g̃i) ⊂ P1
R, then we have div(g̃i) =

µP (g̃i)E+H in Div(Y1). We now compute µP (g̃i). Let g̃i(x) :=
∑ni−1

j=0 cjx
j + xni . Since g̃i is

irreducible and all its roots in K have valuation λi/ni, a Newton polygon argument shows
that ν(cj) ≥ (ni − j)λi/ni for all j. Since mP is generated by x and t, these bounds show

that when i ∈ C<1
P , i.e., when λi/ni < 1, we have c0 ∈ mλi

P and all the other terms of g̃i are

in mλi+1
P and therefore µP (g̃i) = λi. Similarly, when i ∈ C≥1

P , i.e., when λi/ni ≥ 1, we have
xni ∈ mni

P and all the other terms of g̃i are in mni+1
P and therefore µP (g̃i) = ni.

Finally in the local ring OPi , we have div(x) = E when i ∈ C<1
P and div(t) = E when

i ∈ C≥1
P . When i ∈ C≥1

P , since t/x ∈ OQ, we also have (g̃i − xni)/xni in mQ, which in turn
implies that g̃i/x

ni ∈ OQ is a unit. �

We now obtain the replacement polynomials f∞P and f 6=∞P by doing a natural change of
variables on the defining equation g̃i

new of the strict transform of H. The idea behind the
change of variables is to replace the triple P1

R with coordinate x and the divisor of zeroes
of g̃i, with P1

R with coordinate x/t (and t/x respectively) and the divisor of zeroes of g̃i
new

rewritten in new coordinates when i ∈ C≥1
P (and when i ∈ C<1

P respectively). Recall that Q
is the point where the exceptional curve at P ∈ Y0 for the blowup Y1 → Y0 meets the rest
of the special fiber of Y1. The reason we replace x by t when i ∈ C<1

P is that x = 0 cuts out
the exceptional curve EP in the local ring OQ, just as t = 0 cuts out the special fiber (Y0)s
in the local ring OP .

Recall in Section 4, we proved we may assume R = k[[t]] for our purposes. In this case,
since x and t

x
generate mQ, we have a canonical isomorphism of the completed local ring

ÔQ ∼= k[[x, t
x
]] by the Cohen structure theorem. For i ∈ C<1

P , view the germ of the function

g̃i ∈ OQ ↪→ ÔQ as a bivariate power series via this isomorphism.

Definition 6.4. If i ∈ C<1
P , let h♦i ∈ k[[t, x]] be the power series obtained by making the

change of variables x 7→ t and t
x
7→ x in the power series g̃i(x,

t
x
)/xλi ∈ ÔQ ∼= k[[x, t

x
]], i.e.,
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h♦i = g̃i(t, x)/tλi . Use the Weierstrass preparation theorem to write h♦i = u♦hi for some unit
u♦ ∈ k[[t, x]] and monic polynomial hi ∈ k[[t]][x]. If i ∈ C≥1

P , let hi(x) := g̃i
new(tx). Let

bP :=

{
0 if vEP (f) is even

1 if vEP (f) is odd.

f∞P (x) := tbPxb
∏

gi∈C<1
P

hi(x), and,

f 6=∞P (x) := tbP
∏

gi∈C≥1
P

hi(x).

The replacement polynomial for gi is defined to be hi, and the replacement polynomials for f
is the set {f∞P | P ∈ Abad \ {∞}, deg f∞P ≥ 1} ∪ {f 6=∞P | P ∈ Abad \ {∞}, deg f 6=∞P ≥ 1}.

Lemma 6.11. Fix i ∈ C<1
P with deg hi ≥ 1. Recall λi = νK(g̃i(0)). Then hi is irreducible

and deg hi = λi.

Proof. Let g̃i =
∑ni−1

i=0 cix
i + xni . In the proof of Lemma 6.10, we showed that c0 ∈ mλi

Q

and ci ∈ mλi+1
Q for i > 0. Rewriting g̃i

new = g̃i/x
λi ∈ ÔQ ∼= k[[x]][[t/x]] as

∑∞
i=0 c̃i(t/x)i for

c̃i ∈ k[[x]] and using c0 ∈ mλi
Q and ci ∈ mλi+1

Q for i > 0, we see that c̃λi ∈ k[[x]] \ xk[[x]] and
c̃i ∈ xk[[x]] for i < λi. The Weierstrass preparation theorem then shows that if we write

g̃i/x
λ
i = ũ♦h̃i for a unit ũ♦ ∈ ÔQ

∗
and monic polynomial h̃i ∈ k[[x]][t/x], then degt/x h̃i = λi.

Since hi is obtained from h̃i by the change of variables x 7→ t, t/x 7→ x, we get degx hi =

degt/x h̃i = λi.

The hi are irreducible for each i ∈ C<1
P since Lemma 6.10 shows that hi up to a change of

variables equals g̃i
new and g̃i

new cuts out the irreducible divisor corresponding to the strict
transform of div(gi) after we blow up P . �

Let (ñi, λ̃i) be the pair of integers associated to the replacement polynomial hi the same
way (ni, λi) is associated to fi.

Remark 6.5. Let i ∈ C≥1
P . Then the polynomials hi and g̃i are monic irreducible polynomi-

als of the same degree, and furthermore, division by t gives a bijection from the roots of hi
to the roots of g̃i. In particular, (ñi, λ̃i) = (ni, λi − ni) and therefore min(ñi, λ̃i) ≤ (ni, λi).

Remark 6.6. When i ∈ C<1
P , the relation between the roots of hi and the roots of g̃i is

more complicated than in Remark 6.7; for instance in Lemma 6.11 we proved that deg hi =
λi < ni = deg g̃i. However, Theorem 8.14 lets us relate certain coefficients and exponents
of the Newton-Puiseux expansions of the roots of hi to those of g̃i, which in turn lets us

compute ∆g̃i −∆hi . We will show in Corollary 8.15 that (ñi, λ̃i) = (λi, ni−λi) and therefore

min(ñi, λ̃i) ≤ (ni, λi).

Remark 6.7. From the definitions of Abad (§ 6.1) and the replacement polynomials f∞P and

f 6=∞P (Definition 6.4), Lemma 6.11 and Remark 6.5, it follows that if P ∈ Abad \ {∞}, then

we cannot have deg(f∞P ) = deg(f 6=∞P ) = 0.

Lemma 6.12. The replacement polynomials are squarefree.
17



Proof. Fix P ∈ Abad \ {∞}, and let Q be the point where the exceptional curve EP for the
blowup of P1

R at P meets the strict transform of the special fiber of P1
R. If i, j ∈ C≥1

P and

i 6= j, then hi 6= hj. Combined with the previous remark, this proves f 6=∞P is squarefree.
A polynomial g ∈ R[x] is squarefree if and only if div(g) =

∑
Γi for pairwise distinct

irreducible Weil divisors Γi. In OQ, by Lemma 6.10 g̃i/x
λi cuts out the strict transform of

g̃i after the blowup at P for every i ∈ C<1
P , the function t/x cuts out the strict transform of

the special fiber of P1
R, and the function x cuts out EP . It follows that {div(t/x), div(x)} ∪

{div(g̃i/x
λi) | i ∈ C<1

P } is a collection of pairwise distinct irreducible Weil divisors in SpecOQ.
Up to the relabelling x 7→ t and t/x 7→ x, this shows div(f∞P ) is a sum of pairwise distinct
irreducible Weil divisors, and therefore f∞P is squarefree. �

7. Computing change in conductor

In this section, we compute the left hand side of the key inductive inequality Theorem 6.7.
The main idea is to relate the good embedded resolutions of the replacement polynomials
to that of f (Lemma 7.4) and use the additivity of the `-adic Euler characteristic combined
with the Riemann-Hurwitz formula (Corollary 7.5 and Theorem 7.6).

7.1. Relating good embedded resolutions and branch loci of f and its replace-
ment polynomials. We continue to use the notation from Section 6.1, Definition 3.2 and
Definition 6.4.

Definition 7.1. Define the parity integer d to be 0 or 1 depending on whether deg(f) is even
or odd. For each P ∈ Abad \ {∞}, when deg(f∞P ) ≥ 1 define dnod

P to be 0 or 1 depending on

whether deg(f∞P ) is even or odd. Similarly when deg(f 6=∞P ) ≥ 1 define dsm
P using the parity

of deg(f 6=∞P ).

Lemma 7.2. The closed point∞ is in A precisely when d = 1, and∞ ∈ Abad when b = d = 1
(or equivalently, when bd = 1).

Proof. This follows from the definitions of the sets A and Abad in Section 6.1. �

Lemma 7.3. Let f = utbg1 . . . gl ∈ R[x] be the irreducible factorization of a squarefree
polynomial, and let Y and Z be the good embedded resolutions of the pairs (P1

R, div(f)) and
(A1

R, div(f)) respectively and let B,B◦ be div(f)odd on Y and Z respectively. Let d be as in
Definition 7.1. Then

χ(Ys)− χ(Zs) = 1 + bd =

{
2 if b = 1 and d = 1

1 otherwise.

χ(Bs)− χ(B◦s ) = b+ d =


2 if b = 1 and d = 1

0 if b = 0 and d = 0

1 otherwise.

Proof. From the definition of good embedded resolutions, it is clear that Zs ⊂ Ys and B◦ ⊂ B
and to analyze the complements, we have to understand the behaviour of f at the closed
point at ∞ on the special fiber of P1

R. Definition 3.2 and Lemma 6.3 imply that the blowup
π : Y → P1

R is not an isomorphism in a neighbourhood of ∞ ∈ P1
k ⊂ P1

R if and only if b = 1
and deg f is odd, and in this case let E∞ be the exceptional curve for the blowup at ∞,
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and let Q be the point where it meets the strict transform of the special fiber of P1
R. Let

Γ∞ be the scheme-theoretic closure in Y of the point at infinity on the generic fiber P1
K , let

∞ = (Γ∞)s and let Γ be the strict transform of the special fiber of P1
R in Y . Then Γ∞ ⊂ B

if and only if deg f is odd, and Γ ⊂ B if and only if b = 1. We consider four cases based on
the parity of b and deg f .

If b = 1 and deg f is odd, then νE∞(f) = µ∞(div(f)) = 0 and therefore E∞∩B = {Q,∞}
and div(f)odd is regular at these points. Therefore the map from Y to this blowup is an
isomorphism in a neighbourhood of E∞ (i.e. points of E∞ are not blown up any further
on passing to the good embedded resolution Y ). In this case, we have Ys \ Zs = E∞ ∼= P1

k

and Bs \ B◦s = {Q,∞}. Since k is algebraically closed, it follows that χ(P1
k) = 2 and

χ(k− rational point) = 1. Since χ is an additive functor, we have χ(Ys)−χ(Zs) = χ(P1
k) = 2

and χ(Bs) − χ(B◦s ) = χ({Q}) + χ({∞}) = 2. Similarly, one can check that if b = 0 and
deg f is even, then Ys \ Zs =∞ and B = B◦ and in all other cases Ys \ Zs = Bs \ B◦s =∞.
Since χ(∞) = 1, the lemma follows. �

Let Y = Yn → Yn−1 · · · → Y1 → Y0 = P1
R be be the good embedded resolution of the pair

(P1
R, div(f)) as in Definition 3.2. Fix P ∈ Abad. Let EP be the exceptional curve for the

blowup Y1 → Y0 at P , and let Γ be the strict transform of the special fiber of Y0 in Y . Recall
in Definition 6.4, we defined bP ∈ {0, 1} as the parity of νEP (f).

Let QP := Γ ∩ EP ∈ Ys(k). For P 6=∞, let a ∈ R such that x− a specializes to P in Y0,
and let Q′P := div0(x − a) ∩ EP ∈ (Y1)s(k). (These are the points ∞ and 0 respectively on
EP ∼= P1

k in the coordinate (x − a)/t.) If ∞ ∈ Abad, let Q′∞ be the closed point where the
scheme-theoretic closure of the point at infinity in P1

K meets the special fiber of Y f .
Let B = div(f)odd ⊂ Y . For P 6= ∞, let Zsm

P , Znod
P denote the good embedded resolu-

tions of the pairs (A1
R, div(f 6=∞P )) and (A1

R, div(f∞P )) respectively and let Bsm
P , Bnod

P denote

div(f 6=∞P )odd, div(f∞P )odd on Zsm
P , Znod

P respectively.

Lemma 7.4. Keep the notation from the three paragraphs above.

(a) (Zsm
P )s,red and (Znod

P )s,red (and similarly (Bsm
P )red and (Bnod

P )red respectively) are naturally
isomorphic to closed subschemes of Ys,red (and Bred respectively).

(b)

Ys,red \

 ⋃
P∈Abad\{∞}
deg f 6=∞P ≥1

(Zsm
P )s,red ∪

⋃
P∈Abad\{∞}

deg f∞P ≥1

(Znod
P )s,red


equals

E∞ ∪ (Γ \ Abad)
⋃

P∈Abad\{∞}
deg f 6=∞P =0

{Q′P} ∪
⋃

P∈Abad\{∞}
deg f∞P =0

{QP} if b = 1 and d = 1, and,

Γ \ Abad

⋃
P∈Abad\{∞}
deg f 6=∞P =0

{Q′P} ∪
⋃

P∈Abad\{∞}
deg f∞P =0

{QP} otherwise.
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For P ∈ Abad \{∞}, the left hand side of the intersection below inside Ys,red is nonempty

if and only if deg f 6=∞P ≥ 1 and deg f∞P ≥ 1, and in this case we have

(Zsm
P )s,red ∩ (Znod

P )s,red = EP \ {QP , Q
′
P} ∼= P1

k \ {0,∞} ⊂ P1
k
∼= EP ⊂ Ys,red.

(c)

Bs,red \

 ⋃
P∈Abad\{∞}
deg f 6=∞P ≥1

(Bsm
P )s,red ∪

⋃
P∈Abad\{∞}

deg f∞P ≥1

(Bnod
P )s,red


equals

(Γ \ Abad) ∪ {Q′∞}
⋃

P∈Abad\{∞}
bP=1,deg f 6=∞P =0

{Q′P} ∪
⋃

P∈Abad\{∞}
deg f∞P =0

{QP} if b = 1 and d = 1,

Γ \ Abad

⋃
P∈Abad\{∞}

bP=1,deg f 6=∞P =0

{Q′P} ∪
⋃

P∈Abad\{∞}
deg f∞P =0

{QP} if b = 1 and d = 0, and,

A \ Abad

⋃
P∈Abad\{∞}

bP=1,deg f 6=∞P =0

{Q′P} ∪
⋃

P∈Abad\{∞}
bP=1,deg f∞P =0

{QP} if b = 0.

The left hand side of the intersection below inside Bs,red is nonempty if and only if

bP = 1, deg f 6=∞P ≥ 1 and deg f∞P ≥ 1, and in this case we have

(Bnod
P )s,red ∩ (Bsm

P )s,red = EP \ {QP , Q
′
P} ∼= P1

k \ {0,∞} ⊂ P1
k
∼= EP ⊂ Bs,red.

Proof. Fix P ∈ Abad \ {∞}. For i ∈ CP , if we let aPi be as in Section 6.1, since we are
working over the equicharacteristic ring R = k[[t]], we have aPi = aPj for all i, j ∈ CP .
We move P to the origin by the map x 7→ x + aPi and work with g̃i instead of gi for all
i ∈ CP . We will construct h≥1 ∈ Spec R[x/t] (and h<1 ∈ OQ respectively) with the properties
that the special fiber of the good embedded resolution of the pair (Spec R[x/t], h≥1) (and
(OQ, div(h<1)) respectively) is naturally a subset of (Y f

s )red. We will then show that up to

a change of variables and multiplication by a unit, the function h≥1 equals f 6=∞P (and h<1

equals f∞P respectively).
The reason we only get isomorphisms of the underlying reduced subschemes is that the

change of variables to go from h<1 to f∞P uses the isomorphism of complete local k-algebras
k[[x, t/x]] ∼= k[[t, x]] given by x 7→ t and t/x 7→ x, which is not an isomorphism of k[[t]]-
algebras. Hence, we do not expect the multiplicities of the components in the special fiber of
a good embedded resolution to agree, and we only get equalities of the underlying reduced
subschemes.

(a) We first show that (Zsm
P )s,red is a closed subset of Ys,red. Using the formula for νEP (f)

from Corollary 6.5, we get

f = utb

 ∏
i∈C<1

P

tλi(x/t)λi(g̃i/x
λi)

 ∏
i∈C≥1

P

tni(g̃i/t
ni)

 =

u ∏
i∈C<1

P

(x/t)λi(g̃i/x
λi)

 tνE(f)

 ∏
i∈C≥1

P

(g̃i/t
ni)

 .
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By Lemma 6.10, νEP (g̃i/x
λi) = 0 for i ∈ C<1

P . Since νEP (x/t) = 0 and since (g̃i/x
λi)

specializes to the point at ∞ on EP , it follows that
(
u
∏

i∈C<1
P

(x/t)λi(g̃i/x
λi)
)

is a unit

on the affine patch Spec R[x/t] of the blowup Y1 → Y0. By Definition 3.1, it also follows
that the good embedded resolution of (Spec R[x/t], div(f)) is a closed subset of the good

embedded resolution of (Y0, div(f)). Let h≥1 := tbP
(∏

i∈C≥1
P

(g̃i/t
ni)
)

. Since bP = 1

when νEP (f) is odd and bP = 0 when νEP (f) is even, Lemma 3.2 implies that the good
embedded resolutions of the pairs (Spec R[x/t], div(f)) and (Spec R[x/t], div(h≥1)) are

equal, and furthermore div(f)odd = div(h≥1)odd on the resolution. Since h≥1 is f 6=∞P up to
the change of variables x/t 7→ x, it follows that these two pairs have the same embedded

resolution as the pair (Spec R[x], div(f 6=∞P )). Let Γ 6=∞ be the strict transform of the

special fiber of A1
R in the good embedded resolution of the pair (A1

R, div(f 6=∞P )). From

the definition of f 6=∞P , it follows that Γ6=∞ ⊂ Bsm
P if and only if bP = 1, or equivalently,

if and only if EP ⊂ div(f)odd = B ⊂ Y . Putting the above identifications together, and
identifying (Γ6=∞)red with (EP )red, we get that (Zsm

P )s,red (and (Bsm
P )red respectively) is a

closed subset of Ys,red (of Bred respectively).

We now show that (Y
f∞P
s )red is a closed subset of (Y f

s )red. Recall that Q ∈ (Y1)s(k)
is the point where the exceptional curve E for the blowup at P meets the rest of (Y1)s.
For each i ∈ C≥1

P , Lemma 6.9 shows that g̃i/x
ni is a unit in OQ for every i ∈ C≥1

P . As
before, we can now factor f as

f = utb

 ∏
i∈C<1

P

xλi(g̃i/x
λi)

 ∏
i∈C≥1

P

xni(g̃i/x
ni)

 =

u ∏
i∈C≥1

P

(g̃i/x
ni)

 (t/x)bxνE(f)

 ∏
i∈C<1

P

(g̃i/x
λi)

 .

Let h<1 := (t/x)bxbP
(∏

i∈C<1
P

(g̃i/x
λi)
)

. As before, when combined with Lemma 3.2 and

the definition of bP , this yields that the pairs (OQ, div(f)) and (OQ, div(h<1)) have iso-
morphic good embedded resolutions, and that div(f)odd = div(h<1)odd on the resolution.
The reduced special fiber of the good embedded resolution of (OQ, div(f)) is a closed
subset of (Y f

s )red, with Q identified with the point at ∞ on the exceptional curve EP .
Let Γ∞ be the strict transform of the special fiber of P1

R in the good embedded resolution
of the pair (P1

R, div(f∞P )). From the definition of f∞P , it follows that Γ∞ ⊂ Bf∞P if and
only if bP = 1, or equivalently, if and only if EP ⊂ div(f)odd = Bf ⊂ Y f . Since h<1

is f∞P up to the change of variables t/x 7→ x and x 7→ t and multiplication by the unit
u♦ ∈ OQ, by identifying (Γ∞)red with (EP )red as before, and using the isomorphism of

good embedded resolutions of (OQ, div(f)) and (OQ, div(h<1)), we also get that (Y
f∞P
s )red

(and (Bf∞P )red respectively) is a closed subset of (Y f
s )red (and (Bf )red respectively).

(b) Since Y f is also the good embedded resolution of (Y1, div(f)), since EP = {Q} ∪ EP \
{Q}, and since (OQ, div(h<1)) and (EP \ {Q} = Spec R[x/t], div(h≥1)) from part (a)
above have the same good embedded resolutions as (OQ, div(f)) and (EP \ {Q} =
Spec R[x/t], div(f)) respectively, the result follows from the identifications and change
of variables in part (a) above.

(c) Since Γ = div(f)odd, the component Γ ⊂ B if and only if b = 1, the component EP ⊂ B
if and only if bP = 1, the components Γ∞,Γ6=∞ from the proof of part (a) appear

in Bf∞P , Bf 6=∞P respectively if and only if bP = 1. Since the left hand side equals the
21



intersection of the left hand side of part (b) intersected with Bs,red, we get part (c) by
intersecting the right hand side of part (b) with Bs,red. �

Corollary 7.5. For any ? ∈ {f, f 6=∞P , f∞P }, let Y ?, B? be as in Definition 3.4. Then

•

χ(Y f
s )−

∑
P∈Abad\{∞}

deg f∞P ≥1

χ(Y
f∞P
s )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

χ(Y
f 6=∞P
s )

= 2+2bd−](Abad)+

 ∑
P∈Abad\{∞}

deg f∞P =0 or deg f 6=∞P =0

1

− ∑
P∈Abad\{∞}

deg f∞P ≥1

(1+bPd
nod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

(1+bPd
sm
P )

•
χ(Bf

s )−
∑

P∈Abad\{∞}
deg f∞P ≥1

χ(B
f∞P
s )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

χ(B
f 6=∞P
s )

equals

](A)− ](Abad) + b(2 + 2d− ](A)) +

 ∑
P∈Abad\{∞}

deg f∞P =0

(b+ bP − bbP )

+

 ∑
P∈Abad\{∞}
deg f 6=∞P =0

bP


−

∑
P∈Abad\{∞}

deg f∞P ≥1

(bP + dnod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

(bP + dsm
P ).

Proof. We will continue to use the notation from the lemma above. Since k is algebraically
closed, and χ is an additive functor that takes a disjoint union of locally closed subsets to
the corresponding sum of integers, the equalities χ(P1

k) = 2 and χ(k − rational point) = 1
imply that χ(EP ) = 2, χ(P1

k \ {0,∞}) = 0 and χ(Γ \Abad) = 2− ](Abad) for every P ∈ Abad.
Since χ only depends on the underlying reduced subscheme, using the additivity of χ once
again with Lemma 7.4 (a,b) and the fact that d ∈ {0, 1} and d = 1 exactly when deg(f) is
odd, we get

χ(Y f
s )−

∑
P∈Abad\{∞}

deg f∞P ≥1

χ(Znod
P,s )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

χ(Zsm
P,s) = 2bd+ 2− ](Abad) +

∑
P∈Abad\{∞}

deg f∞P =0 or deg f 6=∞P =0

1.

The first equality now follows by applying Lemma 7.3 to (f∞P , bP ) and (f 6=∞P , bP ) instead
of (f, b).

Observe that ](A) − ](Abad) + b(2 + 2d − ](A)) equals χ(A \ Abad) when b = 0, equals
χ(Γ \Abad) when b = 1 and deg(f) is even and, equals χ(E∞) +χ(Γ \Abad) when b = 1 and
deg(f) is odd. For P ∈ Abad \ {∞}, Lemma 7.4(c) shows that QP is not in the right hand
side if and only b = bP = 0. Since b + bP − bbP is 0 when b = bP = 0 and 1 otherwise, it
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follows that b+ bP − bbP equals χ(Bs,red ∩{QP}). We also have that Q′P is in the right hand
side of Lemma 7.4(c) exactly when bP = 1.

The proof of the second equality is now similar to the first and uses Lemma 7.4 (a,c) and
the second equality of Lemma 7.3 and the observations in the previous paragraph. �

Theorem 7.6. Keeping the notation from Section 6.1 and Lemma 7.5, we get

−Art(Xf/S)−
∑

P∈Abad\{∞}
deg f∞P ≥1

[−Art(Xf∞P /S)]−
∑

P∈Abad\{∞}
deg f 6=∞P ≥1

[−Art(Xf 6=∞P /S)]

equals

− b(2 + d) +
∑

P∈A\Abad
P 6=∞,gi∈CP

(ni − 1 + b) + (2 + b)](Abad) +
∑

P∈Abad

∑
gi∈C<1

P

(ni − λi)

−

 ∑
P∈Abad\{∞}

deg f∞P =0

(b− bbP )

+
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

2bP −
∑

P∈Abad\{∞}
deg f∞P ≥1

(b+ 2bPd
nod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

2bPd
sm
P .

Proof. The idea is to combine Corollary 7.5 with the Riemann-Hurwitz formula Lemma 2.1.
Since X?

η is a hyperelliptic curve for ? ∈ {f, f 6=∞P , f∞P }, using Definition 7.1 we have

χ(Xf
η ) = 4− d− deg f, χ(X

f∞P
η ) = 4− dnod

P − deg f∞P , χ(X
f 6=∞P
η ) = 4− dsm

P − deg f 6=∞P .

From Definition 6.4 it follows that

deg f =
∑
P∈A

∑
i∈CP

ni, deg f∞P = b+
∑
i∈C<1

P

λi, deg f 6=∞P =
∑
i∈C≥1

P

ni.

Putting the last two displayed equations together, we get that

∑
P∈Abad\{∞}
deg(f∞P )≥1

χ(X
f∞P
η ) +

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

χ(X
f 6=∞P
η )− χ(Xf

η )

= d− 4−
∑

P∈Abad\{∞}
deg(f∞P )≥1

(dnod
P + b− 4)−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

(dsm
P − 4) +

∑
P∈A\Abad
P 6=∞,gi∈CP

ni +
∑

P∈Abad
P 6=∞

∑
gi∈C<1

P

(ni − λi).

(7.2)
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Similarly, combining Corollary 7.5 with the Riemann-Hurwitz formula and Remark 6.7
which says that if P ∈ Abad \ {∞}, then we cannot have deg(f∞P ) = deg(f 6=∞P ) = 0, we get

χ(Xf
s )−

∑
P∈Abad\{∞}
deg(f∞P )≥1

χ(X
f∞P
s )−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

χ(X
f 6=∞P
s )

=
[
2χ(Y f

s )− χ(Bf
s )
]
−

∑
P∈Abad\{∞}
deg(f∞P )≥1

[
2χ(Y

f∞P
s )− χ(B

f∞P
s )
]
−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

[
2χ(Y

f 6=∞P
s )− χ(B

f 6=∞P
s )

]

= 2

2 + 2bd− ](Abad) +

 ∑
P∈Abad\{∞}

deg f∞P =0 or deg f 6=∞P =0

1

− ∑
P∈Abad\{∞}

deg f∞P ≥1

(1 + bPd
nod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

(1 + bPd
sm
P )



−

](A)− ](Abad) + b(2 + 2d− ](A)) +

 ∑
P∈Abad\{∞}

deg f∞P =0

(b+ bP − bbP )

+

 ∑
P∈Abad\{∞}
deg f 6=∞P =0

bP



−
∑

P∈Abad\{∞}
deg f∞P ≥1

(bP + dnod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

(bP + dsm
P )



= 4− 2b+ 2bd+ (b− 1)](A)− ](Abad) +

 ∑
P∈Abad\{∞}

deg f∞P =0 or deg f 6=∞P =0

(2− bP )

−
 ∑
P∈Abad\{∞}

deg f∞P =0

(b− bbP )


−

∑
P∈Abad\{∞}

deg f∞P ≥1

(2− bP + 2bPd
nod
P − dnod

P )−
∑

P∈Abad\{∞}
deg f 6=∞P ≥1

(2− bP + 2bPd
sm
P − dsm

P ).

(7.3)

By Lemma 7.2, Definition 7.1 and the definitions of the sets A and Abad, it follows that d = 1
precisely when deg(f) is odd, which is precisely when ∞ ∈ A, and similarly ∞ ∈ Abad when
both b = 1 and deg(f) is odd, or equivalently when bd = 1. Using these and rearranging
terms gives the following three equalities.
(7.4)∑
P∈A\Abad
P 6=∞,gi∈CP

ni + (b− 1)](A)− ](Abad) =
∑

P∈A\Abad
P 6=∞,gi∈CP

(ni− 1 + b) + (b− 1)d− 2](Abad) + b](Abad).
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(7.5)
∑

P∈Abad\{∞}
deg f∞P =0 or

deg f 6=∞P =0

(2− bP )−
∑

P∈Abad\{∞}
deg f∞P ≥1

(2− bP )−
∑

P∈Abad\{∞}
deg f 6=∞P ≥1

(2− bP ) = −
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

(4−2bP ).

(7.6)∑
P∈Abad\{∞}

deg f∞P ≥1

4+
∑

P∈Abad\{∞}
deg f 6=∞P ≥1

4+(b−2)](Abad)−
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

2 = −4bd+(2+b)](Abad)+
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

4.

For ? ∈ {f, f 6=∞P , f∞P }, by definition, we have −Art(X?) = χ(X?
s ) − χ(X?

η ). Combining
this with the five numbered equations above, it follows that the left hand side equals[

χ(Xf
s )− χ(Xf

η )
]
−

∑
P∈Abad\{∞}
deg(f∞P )≥1

[
χ(X

f∞P
s )− χ(X

f∞P
η )
]
−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

[
χ(X

f 6=∞P
s )− χ(X

f 6=∞P
η )

]

= −b(2 + d) +
∑

P∈A\Abad
P 6=∞,gi∈CP

(ni − 1 + b) + (2 + b)](Abad) +
∑

P∈Abad

∑
gi∈C<1

P

(ni − λi)

−

 ∑
P∈Abad\{∞}

deg f∞P =0

(b− bbP )

+
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

2bP −
∑

P∈Abad\{∞}
deg f∞P ≥1

(b+ 2bPd
nod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

2bPd
sm
P .

�

8. Metric trees of polynomials

8.1. Overview of this section. For P ∈ Abad and i ∈ C<1
P , it is hard to directly relate

the discriminant of gi with the discriminant of the corresponding replacement polynomial
hi (see Remark 6.6), and use it to compute ν(∆f∞P

). Instead, we first define the metric tree
T (f) attached to a separable polynomial f ∈ R[x] (See Example 8.4 and Figure 1), which
is a combinatorial gadget for recording the t-adic distances between all pairs of roots. The
main results of this section are Theorem 8.5 and Theorem 8.17 that describe how to obtain
the metric tree of the replacement polynomials f 6=∞P and f∞P from the metric tree of f .

More precisely, Lemma 8.3 shows that ν(∆f ) can be computed from the lengths of edges
in the tree T (f) for any monic separable polynomial f . In Theorem 8.14, we describe how to
extract certain exponents and corresponding coefficients of the Newton-Puiseux expansions
of the roots of the replacement polynomials hi from those of gi, and use them to build
the metric tree T (f∞P ) of the replacement polynomial from the metric tree T (f) of f by
appropriately gluing together the metric trees of the irreducible factors of f∞P . This will
then be used together with Lemma 8.3 in Theorem 9.1 for estimating how discriminants
change under the replacement operation.

Throughout this section, we will use some basic terminology of Berkovich spaces; see
[BR10] for a detailed introduction to the subject.
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ζ

ωt2/3 + ω2t5/6ω2t2/3 − ωt5/6
2/3

(ω2t2/3 − ωt5/6|ωt2/3 + ω2t5/6)ζ = 2/3

ζ

t2/3 + t5/6t2/3 − t5/6

2/3

(t2/3 − t5/6|t2/3 + t5/6)ζ = 5/6

Figure 3: The Gromov product and t-adic distances

8.2. The metric tree T (f) and the discriminant ∆f .

Definition 8.1. Let S be a finite subset of P1,Berk

K
. The convex hull C(S) of S is the smallest

connected metric subtree of P1,Berk

K
containing S, with the infinite ends towards the type 1

points in S deleted.

Example 8.2. Let K = C((t)). Let S = {ζ, t2/3 + t5/6, t2/3 − t5/6, ωt2/3 − ω2t5/6, ωt2/3 +
ω2t5/6, ω2t2/3 + ωt5/6, ω2t2/3 − ωt5/6}. Then C(S) is the metric tree in Figure 1.

Definition 8.3. Let f be a monic polynomial in R[x]. The metric tree T (f) of f is the

convex hull of the Gauss point ζ and the roots of f (identified with type I points on P1,Berk

K
).

Example 8.4. Let f be the minimal polynomial of t
2
3 + t

5
6 over C((t)). Then T (f) is the

metric tree C(S) in Example 8.2.

Definition 8.5. For any two type 1 points α and β and a type 2 point γ in P1,Berk

K
, observe

that C({α, β, γ}) is a line segment of finite length. The Gromov product (α|β)γ of α and β
with respect to γ is the length of C({α, β, γ}) .

Example 8.6. In Figure 3, the metric tree C(ω2t2/3 − ωt5/6, ωt2/3 + ω2t5/6, ζ) is coloured
red and the metric tree C(t2/3 − t5/6, t2/3 + t5/6, ζ) is coloured green. This shows that
(ω2t2/3 − ωt5/6|ωt2/3 + ω2t5/6)ζ = 2/3 and (t2/3 − t5/6|t2/3 + t5/6)ζ = 5/6.

Lemma 8.3. Let f be a monic polynomial in R[x]. Then

ν(∆f ) =
∑
αi 6=αj

f(αi)=f(αj)=0

(αi|αj)ζ .

Proof. This follows from ν(αi − αj) = (αi|αj)ζ and ν(∆f ) =
∑

αi 6=αj
f(αi)=f(αj)=0

ν(αi − αj). �

8.4. Metric trees of replacement polynomials. Our next task is to relate the metric
trees of the replacement polynomials to the metric tree of f (Theorem 8.5 and Theorem 8.17).
We make a few more definitions before stating the result.

We will continue to use the notation from Section 6.1 in the rest of this section. Let
f, f∞P , f

6=∞
P be as in Section 6 and Definition 6.4. Recall that type 2 points in P1,Berk

K
can be

identified with divisorial valuations on K(P1). We identify the Gauss point ζ on P1,Berk

K
with
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the divisorial valuation corresponding to the generic point of the irreducible special fiber of
Y f

0
∼= P1

R. Recall that in subsection 6.1, we picked aP ∈ k ⊂ R = k[[t]] for every point

P ∈ A. The point aP can be identified with a type 1 point on P1,Berk

K
.

Definition 8.7. For any real number l > 0, let ζ lP be the point on the unique path connecting

the Gauss point ζ to the type 1 point aP in P1,Berk

K
that is at distance l from ζ.

8.4.1. Metric tree of T (f 6=∞P ). Fix P ∈ Abad such that C≥1
P is not empty. Let T = T (f).

Define a new tree T ′ as follows. Since T is a tree, T \ {ζ1
P} = T0

⊔
i≥1 Ti is a disjoint union

of subtrees Ti of T , and ζ ∈ T0. Let T ′ = {ζ1
P}
⊔
i≥1 Ti. Then T ′ is a connected subset of T ,

and therefore also a tree, and it inherits the metric d from T .

Theorem 8.5. The metric tree T (f 6=∞P ) is isomorphic to the tree T ′ defined in the paragraph
above.

Proof. This follows from the following two observations:

• The tree T ′ is the convex hull of ζ1
P and the roots of gi for i ∈ C≥1

P .

• From Remark 6.5, the collection of roots of f 6=∞P are simply the collection of roots of

the polynomials g̃i for i ∈ C≥1
P divided by t.

This means that the Newton-Puiseux expansion of the roots of each factor of f 6=∞P is obtained
by dropping the leading term and then subtracting 1 from all of the other exponents of
the Newton-Puiseux expansions of the corresponding irreducible factors of f . The effect of
dropping the leading term and shifting all exponents down by 1 on the metric tree is deleting
the initial segment between ζ and ζ1

P . �

8.5.1. Metric tree of T (f∞P ). Fix P ∈ Abad such that C<1
P is not empty.

Definition 8.8. Let
VP := {λi/ni | gi ∈ C<1

P }
be the collection of valuations of the roots of g̃i for the gi ∈ C<1

P .

Definition 8.9. Let a/b ∈ VP and assume gcd(a, b) = 1. Let SP,a/b be a subset of the roots
of f defined as follows:

SP,a/b := {λ | gi(λ) = 0 for some gi ∈ C<1
P satisfying λi/ni = a/b}.

Definition 8.10. Let a/b ∈ VP and assume gcd(a, b) = 1. Define TP,a/b to be the metric
subtree of T (f) obtained by taking the convex hull of SP,a/b.

Galois action on metric trees. Let G := Gal(K/K). Since the G action on P1,Berk

K
fixes

the Gauss point ζ and permutes the roots of any irreducible factor of f ∈ K[x], we get
natural induced G actions on the metric trees T (g̃i), TP,a/b, T (f) for all i and for all a/b.

These actions preserve the lengths of edges and the valency at every vertex. Let Ca/b =
⊔
Ci

be the connected components of TP,a/b \ {ζa/bP }, let Ci = Ci ∪ {ζa/bP } and let Ca/b be the set

of Ci.

Theorem 8.6 (Local symmetry of TP,a/b at ζ
a/b
P ). Fix i ∈ C<1

P . Let gi be an irreducible
factor of f and let g̃i be the shift of gi as defined in Section 6.1. Let ni = deg gi, let ω be
the chosen nth

i root of unity in K and let the valuation of any root of g̃i be λi/ni = a/b with
gcd(a, b) = 1. Let d := ni/b.
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(a) The splitting field of f is a cyclic extension of the form K(t1/n) for some integer n ≥ 1.
(b) Let η(t1/ni) :=

∑
l≥0 alt

l/ni be the Newton-Puiseux expansion of one root of g̃i. Then for
any other root of g̃i, there exists a unique integer j with 0 ≤ j ≤ ni − 1 such that the
Newton-Puiseux expansion of this root is of the form η(ωjt1/ni) =

∑
l≥0 alω

jltl/ni.

(c) The point ζ
a/b
P of T (f) lies on the subtree TP,a/b, and is fixed by the natural G action.

Each Ci is a rooted metric tree with root η
a/b
P , and is the hull of ζ

a/b
P and a naturally

defined subset of SP,a/b.

(d) The elements of Ca/b are in natural bijection with the coefficients of ta/b in the Newton-
Puiseux expansions of the elements of SP,a/b. Let σ be a generator of the cyclic Galois
group G of the splitting field of f over K, and let G′ be the subgroup generated by σb. For

any Ci ∈ Ca/b, the corresponding subset of SP,a/b is a union of G′ orbits for the action of
G′ on SP,a/b.

(e) The G action on TP,a/b induces a natural Z/bZ action on the set of connected components

Ca/b. If f is irreducible with roots of valuation a/b, then the size of Ca/b is b and the

natural G action on Ca/b is transitive. In general, every orbit for this action has size b,
and the connected components in any given orbit are isomorphic as rooted metric subtrees
of T (f).

(f) For any polynomial g, let T gP,a/b denote the metric tree described above with the polynomial

g in place of the polynomial f . The metric tree T giP,a/b for i ∈ C<1
P is isomorphic to a

natural metric subtree of T fP,a/b, and T fP,a/b is the union of the images of T giP,a/b under

these isomorphisms as we vary over all i ∈ C<1
P .

Proof.

(a) Let Li be the splitting field of g̃i over K. Since ni ≤ 2g+ 2 < char k and [Li : K] divides
(ni)!, it follows that Li/K is a tame totally ramified Galois extension, and therefore
cyclic ([Ser79, Chapter IV, § 1 Proposition 1, § 2 Corollary 2 to Proposition 2]). This
also means that every subextension is Galois and cyclic. Since the residue field k of K
is algebraically closed and K is complete, all units in K have nth

i roots in K. Therefore
by Kummer theory, it follows that Li = K(t1/ni) is a cyclic extension and a generator of
the Galois group sends t1/ni to ωt1/ni , where ω is a nth

i root of unity in K. The splitting
field of f is the compositum of the Li and therefore equals K(t1/ lcm(ni)), which by the
same argument as before is cyclic and Galois.

(b) The Galois group of Li/K is cyclic of order ni and is generated by the element σ that
sends t1/ni to ωit1/ni . Since the Galois group acts transitively on the roots of g̃i, if α and
β are any two roots of f , then there is a unique j with 0 ≤ j ≤ ni − 1 with σj(α) = β.
If α =

∑
l≥0 alt

l/ni , since σj(α) = β, it follows that β =
∑

l≥0 alω
jltl/ni .

(c) To show that ζ
a/b
P lies on TP,a/b, it is enough to show that there exist two roots of

g̃i for i ∈ C<1
P whose Newton-Puiseux expansions start with ta/b, and such that the

corresponding coefficients of ta/b are not congruent modulo the maximal ideal of R.
From the previous paragraph and the fact that ωiad is not congruent to ωjad if i 6= j
mod b (since char k > 2g + 2 ≥ ni = db), we see that we can take any two roots of g̃i
that begin with uta/b and uωadta/b.
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Since the connected components of TP,a/b \ ζa/bP are in bijection with the coefficients
of the leading terms of the Newton-Puiseux expansions of the elements of SP,a/b after
subtracting aP and the G action respects the metric tree structure of T (g̃i) and fixes
ζ, it follows that the G action also fixes the point ζP,a/b and permutes the connected

components of TP,a/b \ ζa/bP . Since ζ
a/b
P lies in the closure of the connected component

Ci, it follows that Ci = Ci ∪ {ζa/bP } is also connected and a rooted metric subtree of

TP,a/b. Since TP,a/b is the convex hull of ζ
a/b
P and a subset of Type I points SP,a/b, the

disjoint union decomposition TP,a/b \ {ζa/bP } =
⊔
Ci induces a corresponding disjoint

union decomposition of the SP,a/b.
(d) The edges adjacent to ζP,a/b in T (gi) (not counting the edge towards the Gauss point ζ)

are in bijection with the coefficients of the leading order term ta/b of the roots of g̃i, so
in particular, there are b such edges. If we fix an irreducible factor gi, then the roots of
gi in a particular subtree (i.e, with a leading order term uta/b for a fixed u), are precisely
the roots in a given G′ orbit of a root, since uωiad ≡ u mod t if and only i ≡ 0 mod b.
Taking a union over all irreducible factors of f gives the desired result.

(e) The description of the G action on the Newton-Puiseux expansions shows that the action
on the coefficients of the leading order terms can be thought of as a permutation action
of the bth roots of unity in K and therefore factors through the group Z/bZ. From the
explicit description of the action, it follows that every orbit for this action has size b. In
particular, these connected components in any given orbit are all isomorphic as rooted
metric subtrees of T (f).

(f) These natural identifications arise from restricting the natural identifications of T (gi)
(hull of ζ and the roots of the irreducible factor gi of f) with a metric subtree of T (f)
(hull of ζ and the roots of f). �

8.7. Characteristic exponents of Newton-Puiseux expansions and metric trees.
We will now set up some notation to relate the Newton-Puiseux expansions of the roots of
f to the metric tree T (f).

Lemma 8.8. Assume that the roots of f are all K-rational. Let {a1, a2, . . . , al} be the chosen
lifts in R of the reduction of the roots of f modulo t, and let f(x) = h1(x)h2(x) . . . hl(x) be
a factorization of f such that for every i, every irreducible factor of hi specializes to ai in
P1
R. Let h′i(x) = hi((x− ai)/t). Let S be the metric tree with vertices κ, κ1, . . . , κl such that

there is a single edge of length 1 connecting κ to κi for every i and no other edges. Then
T (f) ∼= (S

⊔
i T (h′i))/ ∼ where the equivalence relation ∼ glues the point κi to the point of

T (h′i) corresponding to the Gauss point, and under this isomorphism the Gauss point ζ in
T (f) gets identified with the point κ of S.

Proof. The proof is making the canonical identifications on P1,Berk

K
coming from our choice

of Newton-Puiseux expansions explicit. The tangent directions from the Gauss point ζ in
T (f) are in bijective correspondence with the reductions of the roots of f modulo t. Let

S ′ is the subset of P1,Berk

K
that includes the Gauss point ζ and the points ζ1

ai
at distance 1

from ζ in the direction corresponding to ai for every i. Then S ′ ∼= S and the roots of f
specialize to the ends κi under the canonical retraction of points of P1,Berk

K
to S ′, and the

roots specializing to κi are precisely the roots of hi for every i. The change of coordinates
x 7→ (x− ai)/t maps the roots of hi bijectively on to the roots of h′i and further induces an

29



isomorphism of the hull of the roots of hi and ζ1
ai

with the metric tree of T (h′i). Since T (f)
can also be described as the hull of ζ, ζ1

ai
and the roots of hi for every i, this finishes the

proof. �

Lemma 8.9. Let s ∈ K and let ν(s) = 1/n for some integer n ≥ 1. If we let (Tt(f), dt)
denote the metric tree from Definition 8.3 and let (Ts(f), ds) denote the metric tree of f
constructed by using Newton-Puiseux expansions using s instead of t. Then Ts(f) and Tt(f)
are canonically homeomorphic and ds = ndt.

Proof. Omitted. Similar to the proof of the previous lemma making canonical identifications
explicit. �

We now recall certain definitions and theorems from [GBGPPP17] that will let us relate
the metric tree T (f) to T (f∞P ). In [GBGPPP17], the authors relate the ‘essential exponents’
and certain coefficients of the Newton-Puiseux expansions of roots of f to those of its ‘inverse’
obtained by reversing the roles of x and t. Dividing the dual Newton-Puiseux expansions by
t gives us Newton-Puiseux expansions of roots of f∞P . We will first recall the definition of
characteristic exponents and essential exponents and show how these are related to symme-
tries of the metric tree T (f) in Lemma 8.6. In Theorem 8.14, we will show how the essential
exponents of each irreducible factor of the replacement polynomial can be derived from the
essential exponents of the corresponding original irreducible factor. In the same theorem, we
will also describe how metric trees for each irreducible factor of the replacement polynomial
overlap. In the setting of [GBGPPP17], the ring R = K[[t]], where K is an algebraically
closed field of characteristic 0. In our setting, we may have char(K) > 0 but the relevant
results still hold since we restrict our attention to polynomials of degree < charK, which in
turn ensures that the Newton-Puiseux expansions have bounded denominators.

Definition 8.11. Let η ∈
⋃
n∈Z>1,(n,p)=1 R(t1/n). The support S(η) of η is the set of nonneg-

ative rational numbers with bounded denominators S(η) such that η has a Newton-Puiseux
expansion of the form η =

∑
m∈S(η)[η]mt

m for the chosen lifts [η]m ∈ R \ {0}.
Assume further that 0 /∈ S(η). The characteristic exponents E(η) of η consists of those el-
ements of S(η) which, when written as quotients of integers, need a denominator strictly
bigger than the lowest common denominator of the previous exponents. That is:

E(η) := {l ∈ S(η) | Nll /∈ Z}, where Nl := min{N ∈ N \ {0} | (S(η) ∩ [0, l)) ⊂ 1

N
Z}.

The sequence of characteristic exponents is the set of elements of E(η) written in increasing
order.

Remark 8.12. The sequence of characteristic exponents is finite for any η as in the definition
above as we assumed that the support of η consists of a set of rational numbers with bounded
denominators.

Example 8.13. Let R = C[[t]]. Then t5/2 + t8/3 and 2t− t5/2 + t8/3− 3t7/2 + t23/6 both have
the same sequence of characteristic exponents namely {5/2, 8/3}.
Definition 8.14. Consider a set E ⊂ Q+ with bounded denominators and an integer p ∈
N \ {0}. Then the sequence ess(E, p) := (ess(E, p)l)l of essential elements of E relative to p is
defined inductively by:

• ess(E, p)0 := minE, and,
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• if l ≥ 0, then ess(E, p)l is defined if and only if E is not contained in the abelian sub-
group Z{p, ess(E, p)0, . . . , ess(E, p)l−1} of Q+ generated by p, ess(E, p)0, . . . , ess(E, p)l−1

, and in this case

ess(E, p)l := min(E \ Z{p, ess(E, p)0, . . . , ess(E, p)l−1}).
In [GBGPPP17, Lemma 3.13], they prove the following lemma relating the characteristic

exponents and the essential exponents of a series ψ ∈ R[t1/n], that we recall for the reader’s
convenience.

Lemma 8.10. Let (α1, α2, . . . , αg) be the sequence of characteristic exponents of a series
ψ ∈ R(t1/n). Then this sequence can be obtained from the sequence of essential exponents
(ε0, ε1, . . . , εd) of ψ relative to 1 in the following way.

• If ε0 /∈ Z, then g = d+ 1 and αi = εi−1 for all i ∈ {1, 2, . . . , d+ 1}.
• If ε ∈ Z, then g = d and αi = εi for all i ∈ {1, 2, . . . , d}.

We will now state a theorem that tells us how to build the metric tree T (f) of f from the
Newton-Puiseux expansions of the roots of f .

Definition 8.15. We will use the notation introduced in Section 6.1. For each P ∈ Abad,
let

γmax
P :=

{
max{λi/ni | i ∈ C<1

P } if C≥1
P = ∅

1 if C≥1
P 6= ∅.

Let Sf be the convex hull of {ζ} ∪ {ζγPP | P ∈ Abad}.

Lemma 8.11. Let r : P1,Berk

K
→ Sf denote the canonical retraction map. Under this retrac-

tion, any root of gi for i ∈ C≥1
P retracts to ζ1

P and the roots in SP,a/b retract to ζ
a/b
P for every

a/b ∈ VP .

Proof. First pass to a cyclic extension L = K(t1/n) to make all roots of f rational. Then
n = kb. If s = t1/n, then the elements of SP,a/b are precisely the roots whose s-adic power

series expansions begin with ska and the roots of g̃i for i ∈ C≥1
P begin with sm for some

m ≥ n. We then combine Lemma 8.9 with a repeated application of Lemma 8.8 to get the
desired result. �

We will now show that the subtree Ci of TP,a/b from Lemma 8.6 is naturally isomorphic to

the metric tree of a polynomial over K(t1/b). Recall that we proved in Lemma 8.6 (d) that

every such subtree is the hull of ζ
a/b
P and a union of certain G′ orbits of roots of f .

Lemma 8.12. Fix a subtree Ci of TP,a/b at ζ
a/b
P like in Section 8.5.1, Lemma 8.6, and let uta/b

be the corresponding leading order term like in Lemma 8.6 (d). Pick a set of representatives
α1, α2, . . . , αr for each G′ orbit of roots corresponding to Ci, and let η1(t1/n1), η2(t1/n2), . . . , ηr(t

1/nr)
be the corresponding Newton-Puiseux expansions of αi − aP . Let s = t1/b and let n′i = ni/b.
Fix l with 1 ≤ l ≤ r.

(a) The minimal polynomial of αl−aP over K(s) has degree ni/b and its roots have Newton-
Puiseux expansions {ηl(ωbjs1/n′i) | 0 ≤ j ≤ (ni/b) − 1}. In particular, if the character-
istic exponents of αl − aP over K are {a0

b0
, a1
b0b1

, . . . , ag
b0b1...bg

} with gcd(bi, ai) = 1, then

a0 = a, b0 = b and the characteristic exponents of its minimal polynomial over K(s) are
{a1
b1
, . . . , ag

b1...bg
}.
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(b) Let jl be the minimal polynomial of (αl − aP − usa)/sa over K(s). The characteristic
exponents of the roots of jl over K(s) are {a1

b1
−a, . . . , ag

b1...bg
−a}. Let j =

∏r
l=1 jl and let

(T (j), d) the corresponding metric tree over the field K(s). Then Ci is isomorphic as a
rooted metric tree to (T (j), 1

b
d) (i.e., the point ζP,a/b maps to the Gauss point in T (j)).

Proof.

(a) In Lemma 8.6(d) we showed that if σ is the generator of G, then σb is the generator
of G′ and that the subset SP,a/b of the roots of f is a union of G′-orbits. The power
series listed here are precisely the elements of the G′-orbit listed explicitly, and the
computation of their essential exponents is a direct calculation.

(b) In Lemma 8.6(e,f) we showed that the convex hull of the roots of f in SP,a/b is a
metric tree TP,a/b rooted at ζP,a/b, and that the connected components of TP,a/b \
{ζP,a/b} are in bijective correspondence with the coefficients of the ta/b of the Newton-
Puiseux expansions of the elements of SP,a/b. Part(b) follows from part(a) and these
identifications and Lemma 8.9. �

Definition 8.16. [Dual series] Two units ϕ(t), ϕ̌(t) ∈ k[[t]]∗ are said to be dual to each other
if we have

tϕ(tϕ̌(t)) = t and tϕ̌(tϕ(t)) = t.

Dual series exist; the dual of ϕ(t) is the inverse image of t under the continuous k-
automorphism of k[[t]] defined by sending t to tϕ(t).

Definition 8.17. Given two irreducible polynomials g, g′ of degrees < char k, the maximal
exponent of contact κg,g′ of g and g′ is defined to be

κg,g′ := max {ν(α− β) | g(α) = g′(β) = 0}.

Lemma 8.13. Let g and g′ be irreducible polynomials in R[x] such that 2 ≤ n := deg g <
char k, 2 ≤ n′ := deg g′ < char k and ν(g(0)) > 0 and ν(g′(0)) > 0. Let the essential
exponents of g and g′ be {e0 := m

n
, e1, . . . , eh} and {e′0 := m′

n′
, e′1, . . . , e

′
h′} respectively. Let

ai, bi for 0 ≤ i ≤ h be the positive integers uniquely defined by the relations ei = ai
b1b2...bi

and

gcd(bi, ai) = 1. Assume that er < κ := κg,g′ ≤ er+1 for some r > 0. Then,

(a) eq = e′q for all q such that 0 ≤ q ≤ r,

(b) m
gcd(m,neq)

= m′

gcd(m′,n′e′q)
= a1b2...bq

gcd(a1b2...bq ,aq)
and neq

gcd(m,neq)
=

n′e′q
gcd(m′,n′e′q)

= aq
gcd(a1b2...bq ,aq)

for all

q such that 0 ≤ q ≤ r.
(c) Fix a root β of g′. Then the multiset {ν(α− β) | g(α) = 0} consists of

• eq occuring (bq − 1)bq+1bq+2 . . . bh times for 0 ≤ q ≤ r, and,
• κ occuring br+1br+2 . . . bh times.

Proof.

(a) Let α :=
∑

q∈S(α)[α]qt
q and β :=

∑
q∈S(β)[β]qt

q be roots of gi and gj respectively such

that ν(α − β) = κ. Then [α]q = [β]q for all q < κ and [α]κ 6= [β]κ. In particular,
S(α)<κ := {q | [α]q 6= 0, q < κ} = S(β)<κ := {q | [β]q 6= 0, q < κ}. Since the essential
exponents of α that are less than < κ only depend on the set S(α)<κ, it follows that α
and β have the same set of essential exponents less than κ, i.e, eq = e′q for all q such that
0 ≤ q ≤ r.
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(b) By the definition of essential exponents there exist positive integers ai, bi, a
′
j, b
′
j for 0 ≤

i ≤ g, 0 ≤ j ≤ h such that
• ei = ai

b1b2...bi
, e′j =

aj
b1b2...bj

for all i, j such that 0 ≤ i ≤ g, 0 ≤ j ≤ h,

• ai = a′i, bi = b′i for all 0 ≤ i ≤ r, and
• n = b1b2 . . . bg, n

′ = b′1b
′
2 . . . b

′
h.

Since m/n = a1/b1 and n = b1b2 . . . bg, we have

m

gcd(m,neq)
=

a1b2 . . . bg
gcd(a1b2 . . . bg, b1b2 . . . bg

aq
b1b2...bq

)

=
a1b2 . . . bqbq+1bq+2 . . . bg

gcd(a1b2 . . . bqbq+1bq+2 . . . bg, bq+1bq+2 . . . bgaq)

=
a1b2 . . . bq

gcd(a1b2 . . . bq, aq)
.

A similar calculation shows m′

gcd(m′,n′e′q)
=

a′1b
′
2...b

′
q

gcd(a′1b
′
2...b

′
q ,a
′
q)

. Since ai = a′i and bi = b′i for all i

such that 0 ≤ i ≤ r, it follows that m
gcd(m,neq)

= m′

gcd(m′,n′e′q)
for all q ≤ r. We can similarly

show that that for all q ≤ r we have

neq
gcd(m,neq)

=
aq

gcd(a1b2 . . . bq, aq)
=

a′q
gcd(a′1b

′
2 . . . b

′
q, a
′
q)

=
n′e′q

gcd(m′, n′e′q)
.

(c) This proof can also be found in [Wal04, Proposition 4.1.3], but we are reproducing it
here with our notation for the reader’s convenience. Let d be the smallest positive
integer such that all roots of g are defined over k[[t1/n]]. Since g is irreducible and
deg g < char k, it follows that d = n. By the definition of characteristic exponents, we
also have d = b0b1 . . . bh. In the rest of the proof, we will freely use n = b0b1 . . . bh.

The proof of part(c) will be an inductive argument on deg(g) using Lemma 8.12 (b),
as we now explain. Since the Galois group acts transitively on the roots of g′, it follows
that for every root β of g′, there exists a root α of g such that ν(α − β) = κ. Fix
such an α for the chosen β, and write down Newton-Puiseux expansions α(t1/n) :=∑

q∈S(α)[α]qt
q, β(t1/n

′
) :=

∑
q∈S(β)[β]qt

q. The other roots of g have the form α(ωit1/n)

where ω is a chosen nth root of unity and i runs between 0 and n− 1. Since κ > m/n =
m′/n′ = a0/b0, we have [α]a0/b0 = [β]a0/b0 . This in turn implies that the roots α′ of g
with a leading order term different from that of β (i.e, have ν(α′−β) = a0/b0) are those
of the form {α(ωit1/n) | 0 ≤ i ≤ n − 1, b0 - i}, and there are precisely n − (n/b0) =
(b0 − 1)b1b2 . . . bh such roots.

For the inductive step, we see that the roots α′ of g such that ν(α′ − β) > a0/b0

are precisely those corresponding to the subtree Ci in Lemma 8.12. In the notation
of that Lemma, our assumptions guarantee that aP = 0, and u = [α]a0/b0 = [β]a0/b0 .

Recall that we proved in Lemma 8.12 (b) that the set {(α′ − uta0/b0)/ta0/b0 | g(α′) =
0, [α′]a0/b0 = [α]a0/b0 = [β]a0/b0} are precisely the Galois conjugates of (α−uta0/b0)/ta0/b0
over k[[t1/b0 ]], and the essential exponents of the corresponding minimal polynomial
are {a1

b1
, a2
b1b2

, . . . , ah
b1b2...bh

}. Replacing β by (β − uta0/b0)/ta0/b0 and the roots α′ with

ν(α′ − β) > a0/b0 by (α′ − uta0/b0)/ta0/b0 and working over K(t1/b0) combined with the
induction hypothesis gives us the desired result. �
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Theorem 8.14. Let hi be the replacement polynomial for gi as in Definition 6.4. Let the
sequence of characteristic exponents of any root of gi (which equals the sequence of charac-
teristic/essential exponents of g̃i) be {mi

ni
, e1, . . . , ed} with ni = deg gi.

(a) The sequence of essential exponents of any root of hi relative to 1 are { ni
mi
− 1, ni

mi
(e1 +

1)− 2, . . . , ni
mi

(ed + 1)− 2}.
(b) The replacement polynomials hi are irreducible. Let i 6= j.

• If mi/ni < mj/nj, then κgi,gj = mi/ni and κhi,hj = (nj/mj)− 1.
• If mi/ni = mj/nj, then κhi,hj = ni

mi
(κgi,gj + 1)− 2.

(c) Let P ∈ Abad,m/n ∈ VP . Fix a subtree (C, d) of TP,m/n corresponding to roots of

f(x− aP ) with leading order term utm/n for some u like in Lemma 8.6. Let v ∈ R such

that vm = un. Then the subtree D of T (f∞P ) obtained by taking the hull of ζ
(n/m)−1
0 and

the roots of f∞P with leading order term vt(n/m)−1 is isomorphic to (C, (n/m)d).
(d) Fix a set of representatives {u1t

m/n, . . . , ult
m/n} for the Galois orbits of leading order

terms of roots of f(x− aP ) of valuation m/n like in Lemma 8.6 (e). For each such ui,
let Dui be the subtree of T (f∞P ) described in the previous part of the theorem. The subtree
T0,(n/m)−1 of T (f∞P ) is isometrically isomorphic to the tree obtained by gluing together

the following subtrees (lm in total) at the common point ζ
(n/m)−1
0 : for each value of ui,

take m subtrees each isometrically isomorphic to the subtree Dui.

Proof.

(a) Recall R = k[[t]]. Let η(s) ∈ k[[s]] be such that η(t1/ni) = utmi/ni + . . . ∈ k[[t1/ni ]] is
the Newton-Puiseux expansion of a root of g̃i, and let u′ ∈ R be such that u′mi = u,
and let η′(s) ∈ k[[s]] be such that η′(0) = u′ and (sη′(s))mi = η(s). Note that these two
equations uniquely define the power series η′. Let uξ′(u) ∈ k[[u]] be the dual series of
sη′(s), and let ξ(u) = (uξ′(u))ni .

Let g̃i(x) =
∑λi

j=0(
∑

l ajlt
l)tλi−jxj +

∑ni
j=λi+1(

∑
l ajlt

l)xj like in Section 6.8. Then

h♦i (x) =
∑λi

j=0(
∑

l ajlx
ltl)xλi−j +

∑ni
j=λi+1(

∑
l ajlx

ltl)tj−λi . Let h♦
′

i (x) := tλih♦i (x/t) =∑λi
j=0(

∑
l ajlx

l)xλi−jtj +
∑ni

j=λi+1(
∑

l ajlx
l)tj. Viewing h♦

′

i (x, t) and g̃i(t, x) as elements

of k[[t, x]], we see that h♦
′

i (t, x) = g̃i(x, t). Since g̃i(η(t1/ni), t) = 0 and η′ and ξ′ are dual

series, the same argument as in [GBGPPP17, Section 4.1] shows that h♦
′

i (ξ(t1/mi), t) = 0.
Since k[[t1/mi ]] is a domain, it follows that h♦i (ξ(t1/mi)/t) = 0. Since h♦i = hiu for some
unit u in k[[t]][[x]], we also have hi(ξ(t

1/mi)/t) = 0.
By the Halphen-Stolz theorem ([GBGPPP17, Corollary 4.5]), we know that the essen-

tial exponents of ξ(t1/mi) are { ni
mi
, ni
mi

(e1 + 1)− 1, . . . , ni
mi

(ed + 1)− 1} and therefore the

essential exponents of ξ(t1/mi)/t are { ni
mi
− 1, ni

mi
(e1 + 1)− 2, . . . , ni

mi
(ed + 1)− 2}.

(b) Let η(t1/ni) ∈ k[[t1/ni ]] be a root of g̃i, and choose an mth
i root of a ∈ k of the coefficient

of the leading order term of η. Then there exist coefficients cl ∈ k for l > ni such that

η(t1/ni) = amitmi/ni

(
1 +

∑
l>mi

clt
l−mi
ni

)
.
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If ξ(t1/mi) :=
∑

q≥ni [ξ]q/mit
q/mi , then we have the following formula for [ξ]q/mi for q ≥ ni

from [GBGPPP17, Propn 4.10].

[ξ]q/mi =
ni
q
a−q

1 +
∑
i≥1

(
−q/mi

i

)(∑
l>mi

clt
l−mi
ni

)i

−1+ q

ni

.

The notation [·]r denotes the coefficient of tr in the enclosed Puiseux series. Varying
over all possible roots η(t1/ni) of g̃i and possible mth

i roots a gives us all possible Newton-
Puiseux expansions ξ(t1/mi)/t of roots of hi.

Observe that to compute the coefficient [ξ]q/mi , the only terms that contribute are all
integers l in the range mi + 1 ≤ l ≤ q + mi − ni. Furthermore, for each l, only finitely
many i contribute (which can in turn be bounded in terms of q and l). In particular
for l = q + mi − ni, the only term that contributes is i = 1. Let η and η′ be two
Newton-Puiseux series for roots of g̃i and g̃j respectively, with corresponding series ξ
and ξ′ constructed as above.

If mi/ni < mj/nj, then (nj/mj)− 1 < (ni/mi)− 1 and therefore ν(ξ/t) = (ni/mi)−
1, ν(ξ′/t) = (nj/mj) − 1 and ν((ξ − ξ′)/t) = (nj/mj) − 1. In this case κgi,gj =

max{ν
(
η(ωnit

1/ni)− η′(ωnj t1/n
′
j)
)
| ωnini = ω

nj
nj = 1} = mi/ni and similarly κh1,h2 =

(nj/mj)− 1.
Now assume that mi/ni = mj/nj. Let κ := ν(η − η′) = κg1,g2 . There are two

possibilities:
(i) mi/ni = mj/nj = κ

(ii) mi/ni = mj/nj < κ.
Case (i):
If mi/ni = mj/nj = κ, we will show that ani 6= bnj for any a, b such that ami = [η]mi/ni
and bmj = [η′]mj/nj . This would in turn imply that ν((ξ−ξ′)/t) = (ni/mi)−1 = (nj/mj)−
1, and since η, η′, a, b are allowed to vary, this would imply that κhi,hj = ni

mi
(κgi,gj +1)−2.

Let m/n := mi/ni = mj/nj with gcd(m,n) = 1 and li := (mi/m) = (ni/n) and
lj := (mj/m) = (nj/n). First we claim that the value of ani for a such that ami = [η]mi/ni
only depends on the value of ali , i.e., if a, ã both satisfy ali = ãli = c and cm = [η]mi/ni ,
then ani = (ali)n = cn = (ãli)n = ãni . Therefore it is enough to prove that an 6= a′n for
any a, b such that am = [η]mi/ni and bm = [η′]mj/nj , with the further assumption that
gcd(m,n) = 1.

If an = bn, then amn = bmn, i.e, [η]nm/n = [η′]nm/n. This in turn means that if we let ω be

the nth root of unity such that ωm = [η′]m/n/[η]m/n (possible since m and n are coprime,
so z → zm induces an automorphism of the set of nth roots of unity), and let ω′ be an
nth
i root of unity such that ω′li = ω, then ν(η(ω′t1/ni)− η′(t1/n′i)) > κ = mi/ni = mj/nj.

This contradicts the definition of κ since η(ω′t1/ni) is also a root of g̃i. This means that
ani 6= bnj for any a, b such that ami = [η]mi/ni and bmj = [η′]mj/nj , which in turn implies
that κhi,hj = ni

mi
(κgi,gj + 1)− 2.
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Case (ii):
Now assume that mi/ni = mj/nj < κ. Let

η(t1/ni) := η(t1/ni) = c0t
mi/ni

(
1 +

∑
l>mi

clt
l−mi
ni

)
∈ k[[t1/ni ]]

η′(t1/nj) := η′(t1/nj) = d0t
mj/nj

1 +
∑
l′>mj

dl′t
l′−mj
nj

 ∈ k[[t1/nj ]]

be roots of g̃i and g̃j respectively such that ν(η − η′) = κ. This means that
• g̃i(η) = 0, g̃j(η

′) = 0,
• c0 = d0,
• if l/ni < κ and (lnj)/ni is not an integer, then cl = 0 and similarly if l′/nj < κ and

(l′ni)/nj is not an integer, then dl′ = 0,
• if l and l′ are integers such that l/ni = l′/nj < κ, then cl = dl′ , and,
• cκni 6= dκnj .

By Lemma 8.13, there exists a unique index r > 0 such that er < κ ≤ er+1 and
e′q = eq for all q ≤ r, and such that mi

gcd(mi,nieq)
=

mj
gcd(mj ,nje′q)

for all q ≤ r. Let

mi/ni = mj/nj = m̃/ñ such that gcd(m̃, ñ) = 1 and let

m := lcm

(
{m̃} ∪

{
mi

gcd(mi, nieq)

∣∣∣∣∣ 0 ≤ q ≤ r

})
= lcm

(
{m̃} ∪

{
mj

gcd(mj, nje′q)

∣∣∣∣∣ 0 ≤ q ≤ r

})
.

Since m̃ | mi, m̃ | mj, we also have m | mi and m | mj. Let c ∈ k such that cm = c0 = d0,
and choose a, b ∈ k such that ami/m = bmj/m = c. Then ami = bmj = c0 = d0. We can
construct dual series ξ and ξ′ for η and η′ with these choices for a, b. We will now show
that because of these careful choices of a, b we have ν(ξ − ξ′) = (ñ/m̃)(κ+ 1)− 1. This
would imply that κhi,hj ≥ ν((ξ − ξ′)/t) = ñ

m̃
(κgi,gj + 1)− 2.

We will first prove that anieq = bnje
′
q for all q ≤ r and then use this to prove aq = bq

′
for

any pair of integers q, q′ such that q/mi = q′/mj < ( ñ
m̃

)(κ + 1)− 1. Since the definition

of m implies that m gcd(mi,niek)
mi

=
m gcd(mj ,njek)

mj
is an integer for k ≤ r, it follows that for

such k we have

agcd(mi,niek) = a
mi
m

m gcd(mi,niek)

mi = c
m gcd(mi,niek)

mi = c
m gcd(mj,nje

′
k)

mj = b
mj
m

m gcd(mj,nje
′
k)

mj = bgcd(mj ,nje
′
k).

Since Lemma 8.13 implies that nieq
gcd(mi,nieq)

=
nje
′
q

gcd(mj ,nje′q)
, we also have

anieq = a
gcd(mi,niek)

nieq
gcd(mi,nieq) = b

gcd(mj ,nje
′
k)

nieq
gcd(mi,nieq) = b

gcd(mj ,nje
′
k)

nje
′
q

gcd(mj,nje
′
q) = bnje

′
q .

We already have

ami = cm = bmj .

Similarly, we also have

ani = a
mi
m̃
ñ = a

mi
m

m
m̃
ñ = c

m
m̃
ñ = b

mj
m

m
m̃
ñ = bnj .
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Putting the last three equalities together, we have ani(el+1)−mi = bnj(e
′
l+1)−mj for all l ≤ r.

For all l ≤ g and l′ ≤ h, let

fl :=
ni
mi

(el + 1)− 1, and fl′ :=
nj
mj

(el′ + 1)− 1.

By part(a) of this lemma, we know that these are the essential exponents of ξ and ξ′

respectively. Let q, q′ be integers such that q/mi = q′/mj < (ñ/m̃)(κ + 1) − 1. Since
(ñ/m̃)(κ + 1) − 1 ≤ fr+1, by the definition of essential exponents, there exist integers
λ0, . . . , λr such that q =

∑r
l=0 λlmifq =

∑r
l=0 λl[ni(el + 1) −mi]. Since q′ = (mjqi)/mi,

we also have q′ =
∑r

l=0 λlmjfq =
∑r

l=0 λlmjf
′
q =

∑r
l=0 λl[nj(e

′
l + 1) − mj]. Since we

already know ani(el+1)−mi = bnj(e
′
l+1)−mj for all l ≤ r, this implies that

aq = a
∑r
l=0 λl[ni(el+1)−mi] =

r∏
l=0

aλl[ni(eq+1)−mi] =
r∏
l=0

bλl[nj(e
′
q+1)−mj ] = bq

′
.

If κ = er+1, then we also have κ = e′r+1, and a suitable modification of the above

argument also shows that ani(κ+1)−mi = bnj(κ+1)−mj .
Now we are finally ready to prove that if ξ :=

∑
l∈S(ξ)[ξ]lt

l, ξ′ :=
∑

l∈S(ξ′)[ξ
′]lt

l, κ′ :=

(ñ/m̃)(κ+ 1)− 1, then [ξ]l = [ξ′]l if l < κ′ and [ξ]κ′ 6= [ξ′]κ′ . These equalities/inequalities
now follow from the facts
• if l/ni < κ and (lnj)/ni is not an integer, then cl = 0 and similarly if l′/nj < κ and

(l′ni)/nj is not an integer, then dl′ = 0,
• if l and l′ are integers such that l/ni = l′/nj < κ, then cl = dl′ , and,
• cκni 6= dκnj ,

the explicit formulae [GBGPPP17, Propn 4.10].

[ξ]q/mi =
ni
q
a−q

1 +
∑
i≥1

(
−q/mi

i

)(∑
l>mi

clt
l−mi
ni

)i

−1+ q

ni

,

[ξ′]q′/mj =
nj
q′
a−q

′

1 +
∑
i≥1

(
−q′/mj

i

)∑
l′>mj

dl′t
l′−mj
nj

i
−1+ q′

nj

,

and the observation that for a fixed q (respectively q′),to compute the coefficient [ξ]q/mi ,
the only terms that contribute are all integers l in the range mi + 1 ≤ l ≤ q + mi − ni,
and furthermore, for each l, only finitely many i contribute, that can in turn be bounded
in terms of q and l (similar modifications for l′). In particular for l = q + mi − ni, the
only term that contributes is i = 1 (similarly for l′).

We will now show that the inequality κhi,hj ≥ ν((ξ−ξ′)/t) = ñ
m̃

(κgi,gj+1)−2 is actually
an equality. Since r 7→ (n/m)(r+ 1)− 1 is an increasing bijection [0,∞)→ [0,∞) (with
inverse bijection given by r 7→ (m/n)(r + 1)− 1) that maps κ to (m/n)(κ+ 1)− 1, and
since (η, η′) 7→ (ξ, ξ′) can be reversed to produce roots of g̃i, g̃j from roots of hi, hj, if
there are roots α, β of hi, hj such that ν(α−β) > ni

mi
(κgi,gj +1)−2, then we can produce a

pair of power series that are roots of g̃i and g̃j respectively such that the ν-adic valuation
of the difference is higher than κ, which will contradict the definition of κ.
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(c) Let

S := {η(t1/n
′
) + aP | f(η + aP ) = 0, ν(η) = m/n, [η]m/n = u}.

Then Lemma 8.6 [(c),(d)] tells us that C is the convex hull of ζ
m/n
P and S.

Let (gi)i∈I be the irreducible factors of f such that gi(α) = 0 for some α ∈ S, and let
ni = deg gi as before. By Lemma 8.6 [(d),(e)], the cardinality of S is

∏
i∈I(ni/n).

We need to show that we can mimic the compatible choice of a, b for the construction
of dual branches ξ, ξ′ in the previous part of this theorem, to show the following. First
pick v ∈ R such that vm = un as in the statement of the theorem.

Let

S ′ := {ξ(t1/m′) | ν(ξ) = n/m, [ξ]n/m = v, ξ(t1/m
′
)is dual to η(t1/n

′
) for some η + aP ∈ S.}

Then D is the the convex hull of ζ
(n/m)−1
0 and {ξ/t | ξ ∈ S ′}. We need to show that D

is a natural subtree of T (f∞P ) that is isomorphic as a metric tree to (C, (n/m)d).
We will first show that |S| = |S ′|. Let hi be the replacement polynomial for gi for

every i ∈ I. Let mi := deg hi = (m/n)ni. Since hi is irreducible and deg hi < char k,
by Lemma 8.6 (b) applied to hi, there is a natural partition of the roots of hi into m
sets of size (mi/m) based on the coefficient of the leading order term of the root. The
roots of hi as we vary over i ∈ I with leading coefficient v are precisely the elements
of the form β/t for some β ∈ S ′. Therefore the cardinality of S ′ is

∏
i∈I(mi/m). Since∏l

i=1(nl/n) =
∏l

i=1(ml/m), it follows that |S| = |S ′|.
Observe that C and D are both rooted trees with roots ζ

m/n
P and ζ

(n/m)−1
0 respectively

and are defined as convex hulls of the root and the sets S, S ′ of the same cardinality of
roots of f, f∞P respectively, with specified leading order terms u, v respectively. Therefore
to prove the claimed isomorphism of metric trees, it suffices to show that if there are
elements η1 + aP , η2 + aP , . . . , ηl + aP ∈ S such that [ηi]q = [ηj]q for all i 6= j and
for all q < ρ (this corresponds to a common segment of length ρ − (m/n) in C in the

unique path connecting ζ
m/n
P to ηi + aP as we vary over i – we have subtracted m/n

from ρ to remove the length of the initial segment between ζ and ζ
m/n
P that all roots

in S share), then there exist corresponding ξ1, . . . , ξl ∈ S ′ such that [ξi]q = [ξj]q for all
i 6= j and for all q < (n/m)(ρ+ 1)− 1 (this corresponds to a common segment of length

(n/m)(ρ−(m/n)) in D in the unique path connecting ζ
(n/m)−1
0 to (ξi)/t as we vary over i

– once again we have subtracted n/m from (n/m)(ρ+ 1)− 1 to remove the length of the

initial segment between ζ and ζ
n/m
0 that all elements in S ′ share; dividing all elements of

S ′ by t only translates the metric tree and moves ζ
n/m
0 to ζ

(n/m)−1
0 and does not change

relative distances).
Let ei be the set of essential exponents of η1, and assume that er < ρ ≤ er+1. By

Lemma 8.13 (a), all the series ηi have the same set of essential exponents < ρ, namely
e0, e1, e2, . . . , er and let ei = ai/(b0b1 . . . bi) with gcd(ai.bi) = 1 for i ≤ r as in Lemma 8.13.
If ηj+aP is a root of gj and if σj is a generator of the Galois group of the splitting field of gj
over K, and Gj is the subgroup generated by σb0b1...brj , then by the definition of essential
exponents and the explicit formula for the Galois action, we see that [g(ηj + aP )]q =
[ηj + aP ]q for all g ∈ Gj and for all q < er+1. So at the very beginning we may replace

the set {η1, . . . , ηl} by this possibly larger Galois saturated set
⋃l
j=1Gjηj without loss
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of generality. Since the Galois group of the splitting field of gj acts transitively on the

roots of gj without fixed points, the size of the Gj orbit Gjηj is |Gj| = deg gj
(b0b1...br)

=
nj

b0b1...br
.

First partition the set {η1, . . . , ηl} based on which irreducible factor g̃i the elements
satisfy, and pick exactly one root for each irreducible factor to make a subset (ηj)j∈J of

{η1, . . . , ηl}. Then
∣∣∣⊔j∈J Gjηj

∣∣∣ =
∏

j∈J
nj

b0b1...br
= l.

We will first construct dual series ξj for j ∈ J . Part(a) of this theorem tells us that

the first r+ 1 essential exponents of ξj are { b0
a0
, . . . , ar+(b0−a0)b1...br

a0b1...br
} and gcd(bi, ai + (b0−

a0)b1 . . . bi) = gcd(bi, ai) = 1. Using this fact and repeating the count in the previous
paragraph tells us that including all Galois conjugates that share the same coefficients
up to (n/m)(er + 1)− 1 (and therefore same coefficients up till (n/m)(ρ+ 1)− 1) gives
us
∏

j∈J
mj

a0b1...br
=
∏

j∈J
nja0
b0

1
a0b1...br

=
∏

j∈J
nj

b0b1...br
dual series, and therefore a full set of

dual series {ξ1, . . . , ξl} that is in bijection with the original set {η1, . . . , ηl}.
To construct ξj from ηj, we need to make a choice of aj ∈ k such that a

mj
j = [ηj]m/n.

To ensure [ξi]q = [ξj]q for all i 6= j and for all q < (n/m)(ρ + 1) − 1, from the explicit
formula for the dual series and mimicing the argument in the previous part(b) theorem,
we need to ensure that a

qmj
j is independent of j for all q < (n/m)(ρ+1)−1. Furthermore,

the same argument as in part(b) tells us that it is enough to prove this for q of the form
(n/m)(er + 1)− 1 for all essential exponents er of the ηi such that er < ρ. (Recall that
by Lemma 8.13, the series ηi have the same essential exponents less than ρ as we vary
over i). The main observation that makes the argument work is that the condition that
we need to impose on the ai to ensure this coincidence (choosing an intermediate c ∈ R
and m ∈ Z dividing all the mi such that cm = [ηi]m/n like in part(b) of this theorem)
only depends on the value of the essential exponents of these series less than ρ and is
the exact same condition for multiple branches as it is for two branches.

(d) The roots of f∞P with valuation (n/m)−1 have a leading order term of the form vt(n/m)−1

where v satisfies vm = un for some leading order term utm/n of a root of f(x−aP ). Since
each value of un corresponding to one Galois orbit for the action on the leading order
terms of roots of f(x−aP ) gives rise to m distinct values of v, and the explicit formula for
the Galois action (Lemma 8.6 (b)) tells us that these m values get permuted transitively,
combining this with Lemma 8.6 [(d),(e)] gives us the desired result. �

Let i ∈ C<1
P and let (ñi, λ̃i) is the pair of integers associated to the replacement polynomial

hi the same way (ni, λi) is associated to fi.

Corollary 8.15. (ñi, λ̃i) = (λi, ni − λi).

Proof. Lemma 6.11 shows deg(hi) = mi. The result now follows from Definition 8.14 and
Theorem 8.14(a). �

8.16. Metric tree of the replacement polynomial f∞P .

Definition 8.18. Let D be a multiset indexing pairs (Td, γd) for each d ∈ D, where Td is
a rooted metric tree and γd ∈ R. Let γmax := supd∈D γd. Let S be a directed line segment
of length γmax with starting point O. For 0 ≤ r ≤ γmax, let Or be the unique point on S
at distance r from O. The amalgamated tree TD of the multiset D is the rooted metric tree
with root O obtained by taking (S

⊔
d∈D Td)/ ∼ where the equivalence ∼ identifies the root

of Td with the point Oγd of S for every d ∈ D.
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Definition 8.19. Given a metric tree (T, d) and a real number α > 0, the scaled metric tree
Tα is the metric tree (T, αd).

Now fix notation as in Theorem 8.6. Let a/b ∈ VP and let Ia/b be the set of orbits for

the Z/bZ action on the collection of rooted metric trees Ca/b. For each i ∈ Ia/b, choose a
rooted metric tree Ti to represent the isomorphism class of rooted metric trees in the orbit
corresponding to i. Let D be a multiset defined as follows.

D :=
⋃

a/b∈VP ,i∈Ia/b

{(T b/ai , (b/a)− 1), . . . , (T
b/a
i , (b/a)− 1)︸ ︷︷ ︸

a pairs

}.

Theorem 8.17. The metric tree T (f∞P ) is the amalgamated tree of the multiset D defined
in the paragraph above.

Proof. The roots of f∞P all have valuation ( b
a
− 1) > 0 for some a/b ∈ VP . Since T (f∞P ) is

obtained by gluing together T
f∞P
0,( b

a
−1)

, the result now follows from Theorem 8.14 (d). �

9. Change in discriminant under replacement

Let f = utbg1g2 . . . gl where the gi are distinct monic irreducible polynomials in R[x] and

b ∈ {0, 1}. Let f∞P , f
6=∞
P be the replacement polynomials for each P ∈ Abad \ {∞} like in

Definition 6.4. The goal of this section is to prove the following theorem.

Theorem 9.1. The quantity

ν(∆f )−

 ∑
P∈A\Abad
P 6=∞,gi∈CP

(ni − 1)

− ∑
P∈Abad\{∞}
deg(f∞P )≥1

ν(∆f∞P
)−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

ν(∆f 6=∞P
)

equals

2b(d+deg f−1)−
∑

P∈Abad
P 6={∞}


appears only if deg(f∞P )≥1︷ ︸︸ ︷

2bP

dnod
P + b− 1 +

∑
gi∈C<1

P

λi

+
∑

gi∈C<1
P

2b(ni − λi) +

appears only if deg(f 6=∞P )≥1︷ ︸︸ ︷
2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni




+
∑

P∈Abad
P 6={∞}

 ∑
gi∈C<1

P

gj∈C≥1
P

2λinj +
∑

gi∈C<1
P

λi

(
λi +

ni
λi
− 2

)
+

∑
i<j

gi,gj∈C<1
P

2λiλj +
∑

gi∈C≥1
P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj

 .
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Lemma 9.2. Let P ∈ Abad \ {∞} such that deg(f 6=∞P ) ≥ 1 (or equivalently C≥1
P 6= ∅). Let

f+
P :=

∏
gi∈C≥1

P
gi. Then

ν(∆f 6=∞P
) = 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni

+
∑
α 6=α′

f+P (α)=f+P (α′)=0

(α|α′)ζ−

 ∑
gi∈C≥1

P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj


Proof. Let h+

P :=
∏

gi∈C≥1
P
hi(x). Then f 6=∞P = tbPh+

P and ν(∆f 6=∞P
) = 2bP (dsm

P + deg h+
P −

1) + ν(∆h+P
). By Definition 6.4 and Remark 6.7 we have deg(hi) = deg(gi) = ni for every

gi ∈ C≥1
P . Combining this with Lemma 8.3 we get

ν(∆f 6=∞P
) = 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni

+
∑
β 6=β′

h+P (β)=h+P (β′)=0

(β|β′)ζ .

Remark 6.5 and the fact that g̃i(x) = gi(x+ aP ) for gi ∈ C≥1
P imply that the map α 7→ β :=

(α − aP )/t induces a bijection from the roots of f+
P to the roots of h+

P . This in turn means
that if (α, α′) maps to the pair (β, β′), then (α|α′)ζ = (β|β′)ζ + 1. Therefore

ν(∆f 6=∞P
) = 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni

+
∑
β 6=β′

h+P (β)=h+P (β′)=0

(β|β′)ζ

= 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni

+
∑
α 6=α′

f+P (α)=f+P (α′)=0

((α|α′)ζ − 1)

= 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni

+
∑
α 6=α′

f+P (α)=f+P (α′)=0

(α|α′)ζ −

 ∑
gi∈C≥1

P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj

 .
�

Lemma 9.3. Let P ∈ Abad \ {∞} such that deg(f∞P ) ≥ 1. Let f−P :=
∏

gi∈C<1
P
gi. Then

ν(∆f∞P
) = 2bP

dnod
P + b− 1 +

∑
gi∈C<1

P

λi

+
∑

gi∈C<1
P

2b(ni − λi) +
∑
α 6=α′

f−P (α)=f−P (α′)=0

(α|α′)ζ

−

 ∑
gi∈C<1

P

λi

(
λi +

ni
λi
− 2

)
+

∑
i<j

gi,gj∈C<1
P

2λiλj

 .
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Proof. Let h−P (x) :=
∏

gi∈C<1
P
hi(x). Then f∞P (x) = tbPxbh−P (x) and ν(∆f∞P

) = 2bP (dnod
P +

deg h−P + b − 1) + ν(∆xbh−P
). By Definition 6.4 and Lemma 6.11 we have deg(hi) = λi for

every gi ∈ C<1
P . Combining this with Lemma 8.3 we get

ν(∆f∞P
) = 2bP

dnod
P + b− 1 +

∑
gi∈C<1

P

λi

+
∑

ξ : h−P (ξ)=0

2b(0|ξ)ζ +
∑
ξ 6=ξ′

h−P (ξ)=h−P (ξ′)=0

(ξ|ξ′)ζ .

For each gi ∈ C<1
P , Lemma 8.14 [(a),(b)] imply that hi is irreducible and that ν(ξ) = (ni

λi
−1)

if hi(ξ) = 0. Since deg(hi) = λi, it follows that∑
ξ : h−P (ξ)=0

2b(0|ξ)ζ =
∑

ξ : h−P (ξ)=0

2bν(ξ) =
∑

gi∈C<1
P

∑
ξ : hi(ξ)=0

2bν(ξ) =
∑

gi∈C<1
P

2b(ni − λi).

For integers r, s > 0, let

fP,r :=
∏

η : f−P (η+aP )=0
ν(η)=r

(x− (η + aP )), and. hP,s :=
∏

ξ : h−P (ξ)=0
ν(ξ)=s

(x− ξ).

Let s, s′ be integers with s′ ≤ s. Since deg gi = λi, we have∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζ =
∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

[
s′ + (ξ|ξ′)ζs′0

]

=
∑

gi,gj∈C<1
P

ni
λi
−1=s

nj
λj
−1=s′

∑
ξ 6=ξ′

gi(ξ)=0
gj(ξ

′)=0

s′ +
∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζs′0

=



∑
gj∈C<1

P
nj
λj
−1=s′

(λj − 1)(nj − λj) +
∑

gi,gj∈C<1
P ,i 6=j

ni
λi
−1=s

nj
λj
−1=s′

2λi (nj − λj) +
∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζs′0 if s = s′

∑
gi,gj∈C<1

P ,i 6=j
ni
λi
−1=s

nj
λj
−1=s′

2λi (nj − λj) +
∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζs′0 if s 6= s′.

Similarly if r ≤ r′, we have

∑
η 6=η′

fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζ =



∑
gj∈C<1

P
λj
nj

=r

λj(nj − 1) +
∑

gi,gj∈C<1
P ,i 6=j

λi
ni

=r,
λj
nj

=r′

2λinj +
∑
η 6=η′

fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζrP if r = r′

∑
gi,gj∈C<1

P ,i 6=j
λi
ni

=r,
λj
nj

=r′

2λinj +
∑
η 6=η′

fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζrP if r 6= r′.
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Let gi ∈ C<1
P and let η, ξ satisfy gi(η + aP ) = 0 and hi(ξ) = 0. If r := ν(η) and s := ν(ξ)

then Lemma 8.14 implies that s = 1
r
− 1. Let r, r′ be integers with r ≤ r′ and let s := 1

r
− 1

and s′ := 1
r′
− 1.

Key claim: ∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζs′0 =
∑
η 6=η′

fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζrP .

For r, r′, s, s′ as above we see that the claim along with some algebra implies that

∑
η 6=η′

fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζ−
∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζ =



∑
gj∈C<1

P
λj
nj

=r

λj

(
λj +

nj
λj
− 2

)
+

∑
gi,gj∈C<1

P ,i 6=j
λi
ni

=r,
λj
nj

=r′

2λiλj if r = r′

∑
gi,gj∈C<1

P ,i 6=j
λi
ni

=r,
λj
nj

=r′

2λiλj if r 6= r′.

Adding these over all possible r, r′ then finishes the proof of the lemma.
Now we prove the key claim. If r 6= r′, then s 6= s′ and both sides of the equality are 0

by Lemma 8.11. So from now on we may assume that r = r′ := a/b with gcd(a, b) = 1 and
s = s′ and that there exist roots of f(x+aP ) of valuation r (otherwise both sides are 0 since
we are summing over the empty set). Like in Theorem 8.17, let Ia/b be the set of orbits for

the Z/bZ action on the collection of rooted metric trees Ca/b. For each γ ∈ Ia/b, choose a
rooted metric tree Tγ to represent the isomorphism class of rooted metric trees in the orbit
corresponding to γ and let Γ be the corresponding set of roots of f (i.e, Tγ is the convex hull

of ζ
a/b
P and Γ). Since the Galois action induces an isometry of P1,Berk

K
, we have∑

η 6=η′
fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζrP =
∑
γ∈Ia/b

∑
η 6=η′
η,η′∈Γ

b(η|η′)ζrP .

Theorem 8.14 (c) gives us a scaled metric Dγ of T (f∞P ) that is homeomorphic to Cγ but
where all lengths are scaled by b/a. We similarly have a set of roots ∆ of f∞P corresponding
to Dγ of valuation (b/a)−1. The Galois action on the subtree T0,(b/a)−1 of T (f∞P ) factors via
Z/aZ, and the description in Theorem 8.14 (d) tells us that the corresponding set of orbits
for the action on the subtrees are still indexed by Ia/b with a elements in each orbit. So we
now have

∑
ξ 6=ξ′

hP,s(ξ)=0
hP,s′ (ξ

′)=0

(ξ|ξ′)ζs0 =
∑
γ∈Ia/b

a·

 ∑
ξ 6=ξ′
ξ,ξ′∈∆

(ξ|ξ′)ζs0

 =
∑
γ∈Ia/b

a·(b/a)·

∑
η 6=η′
η,η′∈Γ

(η|η′)ζrP

 =
∑
η 6=η′

fP,r(η)=0
fP,r′ (η

′)=0

(η|η′)ζrP ,

where the second to last equality relies on the scaled isomorphism between Cγ and Dγ. �

Now we can prove the main theorem of this section.
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Proof of Theorem 9.1. Lemma 8.3 implies that

ν(∆f ) = 2b(d+ deg f − 1) + ν(∆g1g2...gl)

= 2b(d+ deg f − 1) +
∑
α 6=α′

f(α)=f(α′)=0

(α|α′)ζ .

If P ∈ A \Abad and P 6=∞, then Lemma 6.3 implies that there exists a unique index i such
that CP = {gi} and for that i, either gi ∈ C≥1

P and ni = 1 or gi ∈ C<1
P , ni > 1, λi = 1 and

∑
α 6=α′

gi(α)=gi(α
′)=0

(α|α′)ζ =
∑
α 6=α′

gi(α)=gi(α
′)=0

ν(α− α′) =

 ∑
α 6=α′

gi(α)=gi(α
′)=0

1

ni

 = ni − 1.

Since (α|α′)ζ = ν(α − α′), if α and α′ specialize to distinct points in P1
R, then (α|α′)ζ = 0.

So we can write the above formula for ν(∆f ) as

ν(∆f ) = 2b(d+ deg f − 1) +
∑

P∈A\Abad
P 6=∞

∑
gi∈CP

∑
α 6=α′

gi(α)=gi(α
′)=0

(α|α′)ζ +
∑

P∈Abad

∑
gi,gj∈CP

∑
α 6=α′

gi(α)=gj(α
′)=0

(α|α′)ζ

= 2b(d+ deg f − 1) +

 ∑
P∈A\Abad
P 6=∞

nP − 1



+
∑

P∈Abad


∑
α 6=α′

gi,gj∈C<1
P

gi(α)=gj(α
′)=0

(α|α′)ζ +
∑
α 6=α′

gi∈C<1
P ,gj∈C≥1

P
gi(α)=gj(α

′)=0

2(α|α′)ζ +
∑
α 6=α′

gi,gj∈C≥1
P

gi(α)=gj(α
′)=0

(α|α′)ζ

 .

Since ∑
gi∈C<1

P ,gj∈C≥1
P

gi(α)=gj(α
′)=0

(α|α′)ζ =
∑

gi∈C<1
P

gj∈C≥1
P

∑
gi(α)=0
gj(α

′)=0

ν(α− α′) =
∑

gi∈C<1
P

gj∈C≥1
P

∑
gi(α)=0
gj(α

′)=0

ν(α− aP ) =
∑

gi∈C<1
P

gj∈C≥1
P

λinj,

the equality further simplifies to

ν(∆f ) = 2b(d+ deg f − 1) +

 ∑
P∈A\Abad
P 6=∞,gi∈CP

ni − 1


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+
∑

P∈Abad


∑
α 6=α′

gi,gj∈C<1
P

gi(α)=gj(α
′)=0

(α|α′)ζ +
∑

gi∈C<1
P

gj∈C≥1
P

2λinj +
∑
α 6=α′

gi,gj∈C≥1
P

gi(α)=gj(α
′)=0

(α|α′)ζ

 .

Rewriting
∑

P∈Abad

∑
α 6=α′

gi,gj∈C<1
P

gi(α)=gj(α
′)=0

(α|α′)ζ and
∑

P∈Abad

∑
α 6=α′

gi,gj∈C≥1
P

gi(α)=gj(α
′)=0

(α|α′)ζ using Lemma 9.3 and Lemma 9.2

we get that

ν(∆f )−

 ∑
P∈A\Abad
P 6=∞,gi∈CP

(ni − 1)

− ∑
P∈Abad\{∞}
deg(f∞P )≥1

ν(∆f∞P
)−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

ν(∆f 6=∞P
)

equals

2b(d+deg f−1)+
∑

P∈Abad


∑

gi∈C<1
P

gj∈C≥1
P

2λinj −

appears only if deg(f 6=∞P )≥1︷ ︸︸ ︷
2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni

+
∑

gi∈C≥1
P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj



+
∑

P∈Abad

−2bP

dnod
P + b− 1 +

∑
gi∈C<1

P

λi

− ∑
gi∈C<1

P

2b(ni − λi)

︸ ︷︷ ︸
appears only if deg(f∞P )≥1

+
∑

gi∈C<1
P

λi

(
λi +

ni
λi
− 2

)
+

∑
i<j

gi,gj∈C<1
P

2λiλj

 ,
which on rearrangement gives the desired equality. �

10. Proof of inequality

10.1. Change in conductor is less than change in discriminant. In this section, we will
combine Theorem 7.6 and Theorem 9.1 to establish the key inductive inequality Theorem 6.7,
namely, that the change on the conductor side under the replacement operation is less
than the change on the discriminant side. The proof of Theorem 6.7 then follows from an
application of the following simple numerical inequalities and some careful book-keeping.

Lemma 10.2. Let a1, a2, . . . , al be a finite set of integers, each ≥ 1 with
∑l

i=1 ai ≥ 2.

(a)
∑

i ai(ai − 1) + 2
∑

i<j aiaj ≥ 2.

(b) If
∑

i ai is odd, then
∑

i ai(ai − 3) + 2
∑

i<j aiaj ≥ 0.

(c) If
∑

i ai is even, then equality holds in (a) if and only if one of the following holds:
• l = 1 and a1 = 2, or,
• l = 2 and a1 = a2 = 1.
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(d) If
∑

i ai is odd, then equality holds in (b) if and only if one of the following holds:
• l = 1 and a1 = 3, or,
• l = 2 and {a1, a2} = {1, 2}, or,
• l = 3 and a1 = a2 = a3 = 1.

Proof. Let
∑
ai = S. We then have∑

i

ai(ai − 1) + 2
∑
i<j

aiaj = S(S − 1)

∑
i

ai(ai − 3) + 2
∑
i<j

aiaj = S(S − 3)

If S ≥ 2, then S(S − 1) ≥ 2. Furthermore, if S is even and S(S − 1) = 2, then we have∑
ai = S = 2. Similarly, if S ≥ 3, then S(S − 3) ≥ 0 and S(S − 3) = 0 when

∑
ai = S = 3.

The other two parts follow since the ai are nonnegative integers. �

We are now finally ready to prove Theorem 6.7.

Proof of Theorem 6.7. Theorem 7.6 tells us that the quantity

−Art(Xf/S)−

 ∑
P∈Abad\{∞}
deg(f∞P )≥1

−Art(Xf∞P /S) +
∑

P∈Abad\{∞}
deg(f 6=∞P )≥1

−Art(Xf 6=∞P /S)


equals

− b(2 + d) +
∑

P∈A\Abad
P 6=∞

(ni − 1 + b) + (2 + b)](Abad) +
∑

P∈Abad\{∞}

∑
gi∈C<1

P

(ni − λi)

−

 ∑
P∈Abad\{∞}

deg f∞P =0

(b− bbP )

+
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

2bP −
∑

P∈Abad\{∞}
deg f∞P ≥1

(b+ 2bPd
nod
P )−

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

2bPd
sm
P .

Theorem 9.1 and the equality λi(λi + ni
λi
− 2) = (ni − λi) + λi(λi − 1) tell us that the

quantity

ν(∆f )−

 ∑
P∈A\Abad
P 6=∞,gi∈CP

(ni − 1)

− ∑
P∈Abad\{∞}
deg(f∞P )≥1

ν(∆f∞P
)−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

ν(∆f 6=∞P
)
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equals

2b(d+deg f−1)−
∑

P∈Abad
P 6={∞}


appears only if deg(f∞P )≥1︷ ︸︸ ︷

2bP

dnod
P + b− 1 +

∑
gi∈C<1

P

λi

+
∑

gi∈C<1
P

2b(ni − λi) +

appears only if deg(f 6=∞P )≥1︷ ︸︸ ︷
2bP

dnod
P − 1 +

∑
gi∈C≥1

P

ni




+
∑

P∈Abad
P 6={∞}

 ∑
gi∈C<1

P

gj∈C≥1
P

2λinj +
∑

gi∈C<1
P

[(ni − λi) + λi(λi − 1)] +
∑
i<j

gi,gj∈C<1
P

2λiλj +
∑

gi∈C≥1
P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj

 .

Case I: b = 0
In this case, we have to prove that

∑
P∈A\Abad
P 6=∞

(ni − 1) + 2](Abad) +
∑

P∈Abad\{∞}

∑
gi∈C<1

P

(ni − λi) +
∑

P∈Abad\{∞}
deg f∞P ≥1 and

deg f 6=∞P ≥1

2bP

−
∑

P∈Abad\{∞}
deg f∞P ≥1

2bPd
nod
P −

∑
P∈Abad\{∞}
deg f 6=∞P ≥1

2bPd
sm
P

is less than or equal to

∑
P∈(A\Abad)
P 6=∞,gi∈CP

(ni−1)−
∑

P∈Abad
P 6=∞


appears only if deg(f∞P )≥1︷ ︸︸ ︷

2bP

dnod
P − 1 +

∑
gi∈C<1

P

λi

+

appears only if deg(f 6=∞P )≥1︷ ︸︸ ︷
2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni


+

∑
P∈Abad
P 6=∞

∑
gi∈C<1

P

(ni−λi)

+
∑

P∈Abad
P 6=∞

 ∑
gi∈C<1

P

gj∈C≥1
P

2λinj +
∑

gi∈C<1
P

λi(λi − 1) +
∑
i<j

gi,gj∈C<1
P

2λiλj +
∑

gi∈C≥1
P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj

 .

Since b = 0, by definition of Abad it follows that ∞ /∈ Abad. Therefore, it suffices to show
that for each P ∈ Abad, we have the inequality
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(10.1)

2 +

appears only if deg(f∞P )≥1 and deg(f 6=∞P )≥1︷︸︸︷
2bP −

appears only if deg(f∞P )≥1︷ ︸︸ ︷
2bPd

nod
P −

appears only if deg(f 6=∞P )≥1︷ ︸︸ ︷
2bPd

sm
P

≤
∑

gi∈C<1
P

gj∈C≥1
P

2λinj +
∑

gi∈C<1
P

λi(λi − 1) +
∑
i<j

gi,gj∈C<1
P

2λiλj +
∑

gi∈C≥1
P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj

− 2bP

dnod
P − 1 +

∑
gi∈C<1

P

λi


︸ ︷︷ ︸

appears only if deg(f∞P )≥1

− 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni


︸ ︷︷ ︸

appears only if deg(f 6=∞P )≥1

Note that when b = 0, it follows from Definition 6.4, Lemma 6.11 and Remark 6.5 that
deg(f∞P ) =

∑
gi∈C<1

P
λi and deg(f 6=∞P ) =

∑
gi∈C≥1

P
ni. Since P ∈ Abad, we have

∑
gi∈C<1

P
λi +∑

gi∈C≥1
P
ni ≥ 2. If bP = 0, the inequality now follows from Lemma 10.2(a) applied to

{n1, n2, . . .} ∪ {λ1, λ2, . . .}, and furthermore note that the left hand side of Theorem 6.7 is
strictly positive. In this case, we note from Lemma 10.2(c) that we have equality only if

w̃tP =
∑
i∈C≥1

P

ni +
∑
i∈C<1

P

λi = 2.

If bP = 1, then by Corollary 6.5,
∑

gi∈C<1
P
λi +

∑
gi∈C≥1

P
ni is odd. Since dnod

P is the par-

ity of deg(f∞P ) =
∑

gi∈C<1
P
λi and dsm

P is the parity of deg(f 6=∞P ) =
∑

gi∈C≥1
P
ni, it follows

that {dnod
P , dsm

P } = {0, 1}, and the left hand side of our inequality is 2 if deg(f∞P ) ≥ 1 and

deg(f 6=∞P ) ≥ 1, and 0 otherwise. In this case, the inequality now follows from Lemma 10.2(b)
applied to {n1, n2, . . .} ∪ {λ1, λ2, . . .}. For the purpose of Corollary ??, we note from
Lemma 10.2(d) that we have equality only if

w̃tP =
∑
i∈C≥1

P

ni +
∑
i∈C<1

P

λi = 3.

Note that the left hand side of Theorem 6.7 is nonnegative, and the right hand side is 0 only
when

∑
gi∈C<1

P
λi +

∑
gi∈C≥1

P
ni = 3 and one of deg(f 6=∞P ) and deg(f∞P ) is 0.

Case II: b = 1

When b = 1, by Definition 6.4, we have deg(f∞P ) ≥ 1 for all P ∈ Abad and therefore

(10.2)

 ∑
P∈Abad\{∞}

deg f∞P =0

(b− bbP )

 = 0.
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Since (
∑

i∈C<1
P
λi +

∑
i∈C≥1

P
ni) ≥ 1 for all P ∈ A and since b = 1, Lemma 6.3 implies that

A = Abad and therefore

(10.3)
∑

P∈A\Abad
P 6=∞

(ni − 1 + b) = 0.

For each P ∈ Abad \ {∞}, we have

(10.4)
∑
i∈C<1

P

2ni +
∑

gi∈C≥1
P

2ni −
∑
i∈C<1

P

2(ni − λi) =
∑

gi∈C≥1
P

2ni +
∑

gi∈C<1
P

2λi.

Since b = 1, by Lemma 7.2 we have ∞ ∈ Abad exactly when d = 1. This implies that

(10.5) − bd+ b](Abad)−
∑

P∈Abad\{∞}
deg(f∞P )=0

b−
∑

P∈Abad\{∞}
deg(f∞P )≥1

b = 0.

Note we also have

(10.6) deg f =
∑

P∈A\{∞}

 ∑
gi∈C<1

P

ni +
∑

gi∈C≥1
P

ni

 ,

Using equations 10.2,10.3,10.4,10.5 and 10.6 and arguing as in the case b = 0, to prove
Theorem 6.7 when b = 1, it now suffices to prove that the following inequality holds for each
P ∈ Abad \ {∞}. (Recall that we showed deg(f∞P ) ≥ 1 for all P ∈ Abad \ {∞}.)

(10.7)

2 +

appears only if deg(f 6=∞P )≥1︷︸︸︷
2bP −2bPd

nod
P −

appears only if deg(f 6=∞P )≥1︷ ︸︸ ︷
2bPd

sm
P

≤
∑

gi∈C<1
P

gj∈C≥1
P

2λinj +
∑

gi∈C<1
P

λi(λi − 1) +
∑
i<j

gi,gj∈C<1
P

2λiλj +
∑

gi∈C≥1
P

ni(ni − 1) +
∑
i<j

gi,gj∈C≥1
P

2ninj

∑
gi∈C≥1

P

2ni +
∑

gi∈C<1
P

2λi − 2bP

dnod
P − 1 +

∑
gi∈C<1

P

λi

− 2bP

dsm
P − 1 +

∑
gi∈C≥1

P

ni


︸ ︷︷ ︸

appears only if deg(f 6=∞P )≥1

Since bP ∈ {0, 1} and by Lemma 6.5 we have bP = 1 if and only if 1+
∑

i∈C≥1
P
ni+

∑
i∈C<1

P
λi

is odd and since A = Abad, has to be at least 3. If bP = 0 (equivalently
∑

i∈C≥1
P
ni+

∑
i∈C<1

P
λi

is odd), the desired inequality now follows from Lemma 10.2(a) if
∑

i∈C≥1
P
ni+

∑
i∈C<1

P
λi ≥ 2

and from the inequality

2 ≤
∑

gi∈C≥1
P

2ni +
∑

gi∈C<1
P

2λi

if
∑

i∈C≥1
P
ni +

∑
i∈C<1

P
λi = 1. In both cases, note that the left hand side of Theorem 6.7

is strictly positive. Similarly, if bP = 1 (equivalently
∑

i∈C≥1
P
ni +

∑
i∈C<1

P
λi is even, and
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therefore ≥ 2), then

∑
gi∈C≥1

P

2ni +
∑

gi∈C<1
P

2λi − 2bP

 ∑
gi∈C<1

P

λi

− 2bP

 ∑
gi∈C≥1

P

ni

 = 0

and therefore the desired inequality follows from Lemma 10.2(a) as before. Once again note
that the right hand side of Theorem 6.7 is strictly positive. Observe that we have equality
in Equation 10.7 precisely when w̃tP =

∑
i∈C≥1

P
ni +

∑
i∈C<1

P
λi is either 1 or 2.

Finally note that if b = 0, we have wtP ∈ {2, 3} precisely when w̃tP ∈ {2, 3}, and that if

b = 1, we have wtP ∈ {2, 3} precisely when w̃tP ∈ {1, 2}. These are precisely the cases we
found for equality above. �

Corollary 10.3. Let g be a replacement polynomial for f and assume that deg(g) ≥ 1. Then
(deg(g), ν(∆g)) ≤ (deg(f), ν(∆f )) in the lexicographic ordering. Equality can possibly hold
only when for every P ∈ Abad, we have b = 0 and wtP = 3. In this case, for every replacement
polynomial h of g, we have (deg(h), ν(∆h)) < (deg(g), ν(∆g)) in the lexicographic ordering.
In particular, the inductive process outlined in Section 6.6 terminates.

Proof. Theorem 6.7(c) shows that

0 ≤ ν(∆f )−

 ∑
P∈A\Abad
P 6=∞,gi∈CP

(ni − 1)

− ∑
P∈Abad\{∞}
deg(f∞P )≥1

ν(∆f∞P
)−

∑
P∈Abad\{∞}
deg(f 6=∞P )≥1

ν(∆f 6=∞P
).

Note that by Remark 6.5 and Remark 6.6 the degrees of the replacement polynomials are
non-increasing. Combining the previous two sentences, we see that for any replacement
polynomial g with deg(g) ≥ 1, we have (deg(g), ν(∆g)) ≤ (deg(f), ν(∆f )) in the lexico-
graphic ordering. Furthermore, by Theorem 6.7(c) the displayed inequality of discrimi-
nants above is strict unless for every P ∈ Abad, we have b = 0,wtP = 3 and that one of
deg(f 6=∞P ) and deg(f∞P ) is 0. This further shows that the only case when we can possibly have
(deg(g), ν(∆g)) = (deg(f), ν(∆f )) for a replacement polynomial g is when b = 0,wtP = 3.
In these cases, by the definition of bP and Lemma 6.5, we have bP = 1, and therefore
once again by Theorem 6.7(c), we see any of the replacement polynomials h for g satisfy
(deg(h), ν(∆h)) < (deg(g), ν(∆g)) = (deg(f), ν(∆f )) in the lexicographic ordering. �

We need an alternate characterization of good weight 3 points from Definition 6.2 before

we can prove Theorem 1.3. Let f̃P =
∏

fi∈CP fi.

Lemma 10.4. Suppose b = 0 and P in div(f) satisfies wtP = 3. Then P is a good weight 3

point if and only if w̃tQ ≤ 2 for every Q in div(g) for every replacement polynomial g of fP .

Proof. Since b = 0 and wtP = 3, this means w̃tP =
∑

i∈CP min(ni, λi) = 3.

Since the contribution to w̃tQ from each irreducible factor is at least 1, and non-decreasing
if we replace fi ∈ CP by any of its replacement polynomials, it follows that if the irreducible
polynomials in CP specialize to more than one point after one blow-up, then w̃tQ ≤ w̃tP−1 =
2 for every Q in div(g) for every replacement polynomial g of fP . This is the first case in
the definition of a good weight 3 point.
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We may now further assume that all irreducible polynomials in CP specialize to the same
point Q on the exceptional curve EP after one blowup. Since the contribution from each
irreducible polynomial fi in CP to w̃tP is at least 1, it follows that CP consists of at most three
irreducible polynomials. Furthermore, if CP consists of 3 irreducible polynomials f1, f2, f3

and min(ni, λi) = 1 for every i, since the replacement polynomial for each fi contributes at

least 1 to w̃tQ, it follows that w̃tQ = 3. This case is excluded from the definition of a good
weight 3 point. It remains to analyze the cases when CP has at most two distinct irreducible
factors.

The remaining possibilities for w̃tP = 3 and w̃tQ ≤ 2 are

(a) CP consists of 2 irreducible polynomials f1, f2 and min(n1, λ1) = 1 and min(n2, λ2) =

2, and the pair of integers (ñ2, λ̃2) for the replacement polynomial h2 of f2 satisfy

min(ñ2, λ̃2) = 1, and,
(b) CP consists of a single irreducible polynomial f1 and min(n1, λ1) = 3, and the pair of

integers (ñ1, λ̃1) for the replacement polynomial h1 of f1 satisfy 1 ≤ min(ñ1, λ̃1) ≤ 2.

Since Remark 6.5 and Remark 6.6 show that for each i we have

(ñi, λ̃i) =

{
(ni, λi − ni) if λi ≥ ni,

(λi, ni − λi) if λi < ni,

it follows that

(a) min(n2, λ2) = 2 and min(ñ2, λ̃2) = 1 if and only if (n2, λ2) ∈ {(3, 2), (2, 3)}, and,

(b) min(n1, λ1) = 3 and 1 ≤ min(ñ1, λ̃1) ≤ 2 if and only if (n1, λ1) ∈ {(3, 4), (4, 3), (3, 5), (5, 3)}.
These are precisely the remaining cases in Definition 6.2. �

Proof of Theorem 1.3. We have −(Art(Xf )) = ν(∆f ) if and only if the condition for equal-
ity in Theorem 6.7(b) holds for f and all its replacement polynomials. In particular, for
−(Art(Xf )) = ν(∆f ), it is necessary that wtP ≤ 3 for every P ∈ A.

We first show that if w̃tP ≤ 2, then the condition for equality is satisfied by all the
replacement polynomials coming from fi in CP . Remark 6.5 and Remark 6.6 show that the
contribution to w̃t is non-decreasing when we replace fi by its replacement polynomials. So
once again using wt−w̃t ≤ 1, we see that wt ≤ 3 and the condition for equality is satisfied by
all the replacement polynomials coming from fi in CP . In particular, if wtP ≤ 2 or if b = 1
and wtP ≤ 3, then the condition for equality is satisfied by all the replacement polynomials
coming from fi in CP .

It remains to analyze the case b = 0 and wtP = 3. Since wtP is odd, by Corollary 6.5 and
the Definition of bP , we have bP = 1. Remark 6.5 and Remark 6.6 show that w̃tQ ≤ w̃tP = 3

for every Q in div(g) for every replacement polynomial g of fP :=
∏

i∈CP fi. If w̃tQ = 3, then

wtQ = bP + w̃tQ = 4 and the condition for equality in Theorem 6.7(b) fails at the second

stage. If w̃tQ ≤ 2 for every Q in div(g) for every replacement polynomial g of fP , then by

repeating the same argument as in the case w̃tP ≤ 2, we see that the condition for equality in
Theorem 6.7(b) is satisfied by all further replacement polynomials. Combining the previous
two sentences with Lemma 10.4 completes the analysis in the case b = 0 and wtP = 3. �

Proof of Corollary 1.4. The only way we have a point P in div(f) with wtP ≥ 4 is if b = 1
and all roots of f specialize to P and have valuation ≥ 1. In this case the replacement
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polynomial for f after one blowup defines the same elliptic curve, but has strictly smaller
discriminant, so the original equation y2 = f(x) is not minimal. Similarly, if wtP = 3, and

there is a point Q in the exceptional curve at the blowup at P such that w̃tQ ≥ 3, then
once again it must be the case that all roots of f specialize to Q and that the replacement
polynomial of f has strictly smaller discriminant. In other words, if f is a polynomial that
realizes the minimal discriminant of the curve y2 = f(x), then by Lemma 10.4, the conditions
of Theorem 1.3 are satisfied, and we have −(Art(Xf )) = ν(∆f ). �

Proof of Corollary 1.5. Each irreducible factor contributes at least 1 to the weight. �

Example 10.8. [Combinatorics to rule out equality] The genus 2 hyperelliptic curve corre-
sponding to the equation y2 = (x−1)(x−2)(x−3)(x− t2)(x−2t2)(x−3t2) over K = C((t))
has −Art(Xf ) < ν(∆f ) since the point P : x = t = 0 is not a good weight 3 point. The

replacement polynomial f 6=∞0 (x) = t(x − t)(x − 2t)(x − 3t) and has weight 4 at the unique
point of specialization on EP .

Example 10.9. Let g ≥ 2 be an even integer. Pick g elements a1, a2, . . . , ag ∈ R with
pairwise distinct residues in k \ {0, 1,−1}. Let f(x) = x(x + 1)(x − ta1)(x − ta2) · · · (x −
tag)(x− 1− ta1)(x− 1− ta2) · · · (x− 1− tag). One can check that the model Y f is a chain of
3 projective lines, and that Xf is the minimal regular (even semistable) model, and compute
that ∆C = 2g(g − 1) and −Art(C/K) = 4. This example shows that for higher g, the
difference between −Art(C/K) and ν(∆C) can be as large as a quadratic function of g.

Remark 10.10. Since
∑

i∈C≥1
P
ni +

∑
i∈C<1

P
λi ≤ deg(f), and the degrees of the replacement

polynomials are at most the degree of f , the inductive inequality in Theorem 6.7 also gives
ν(∆f ) ≤ deg(f)(deg(f)−1)(−Art(Xf )). Since we have not analyzed how many contractible
components, the model Xf has in general, it is not clear to us if this also gives ν(∆f ) =
ν(∆C) ≤ (g + 1)(2g − 1)(−Art(C/K)).

10.5. Termination of induction and the conductor-discriminant inequality.

Proof of 1.1. Since regularity is preserved under unramified base extensions and since these
invariants are unchanged under unramified base extensions, we may assume that k is alge-
braically closed by extending scalars to the Henselization. Let f ∈ R[x] be a separable poly-
nomial such that ∆f = ∆C . We may assume that R = k[[t]] using Proposition 4.1. Let Xf

be the regular model of C from Definition 3.4, Lemma 3.3. Since −Art(C/K) ≤ −Art(Xf )
by [Liu94, Proposition 1], it now suffices to prove −Art(Xf ) ≤ ν(∆f ).

The proof is by induction on the ordered pair (deg(f), ν(∆f )). The base case of the induc-
tion is when the set Abad from Section 6.1 is empty, and in this case the inequality follows
from Lemma 6.3, Corollary 6.4 and Lemma 5.2. If Abad is not empty, define replacement
polynomials as in Definition 6.4 for each P ∈ Abad. By Remark 6.7 and Corollary 10.3 the
induction hypothesis applies after at most two replacement steps, and it follows that that the
conductor-discriminant inequality holds for all the replacement polynomials. Adding these
inequalities to the inequality in Theorem 6.7 proves the conductor-discriminant inequality
for f . �
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