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@ Galois actions & Serre's open image theorem
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Galois actions: Size?

Common Belief:

Im(Gg) should be as large as possible,
unless there is a good reason not to be.

Restriction:

A finite index subgroup of Ggp commutes with Endg(A)-action.
Larger Endg(A) = smaller Im(Gg).

Question:

If Endg(A) = Z, is Im(Gg) large?



Open image theorems for abelian varieties

Theorem (Serre, 1972, dim A = 1)
If E/Q is an elliptic curve, End@(E) = 7, then

pe: Gg — Aut(lim E[m]) = GLa(2)

has open image.

Remarks:
@ Also true when dim A is 2,6 or odd. (Serre, 1986 letter)

e False when dim A = 4. Mumford gave a counterexample.
(Gg-action has to preserve additional symmetries for some A.)

@ Also holds for abelian varieties over number fields.



Open image theorems for abelian varieties

Theorem (Serre, 1972, dim A = 1)
If E/Q is an elliptic curve, End@(E) = 7, then

pe: Gg — Aut(lim E[m]) = GLa(2)

has open image. In particular, pg ¢ is surjective for almost all {.

Remarks:
@ Also true when dim A is 2,6 or odd. (Serre, 1986 letter)

e False when dim A = 4. Mumford gave a counterexample.
(Gg-action has to preserve additional symmetries for some A.)

@ Also holds for abelian varieties over number fields.
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Some follow up questions

@ Given E, can you effectively compute all the exceptional
¢ where pg ¢ is nonsurjective? Yes!

SDJE. sage 9.1 Reference Manual: Curves » previous | next | modules | index
Previous topic Galois representations for elliptic curves over number

Galois representations .

altached to elliptic curves fields
Next topic

} s of el This file contains the code to compute for which primes the Galois representation attached to an elliptic curve
Isogeny dlass of elliptic curves | - uer an arbitrary number field) is surjective. The functions in this file are called by the is_surjective and
over number fields !

non_surjective methods of an elliptic curve over a number field

This Page
Show Source EXAMPLES:

Quick search sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
sage. dpticcurve([1, @, ((5 + a)/2)**2, e, e])

sage: rho = E.galois representation()
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
False
sage: rho.is_surjective(31) # See Section 5.10 of [Ser1972]
True
sage: rho.non_surjective() # Long tine (4s on sage.math, 2014)
[, 5, 291
sage: E = EllipticCurve_fron_j(1725).change_ring(K) # Cif
sage: E.galois_representation().non_surjective() # Long tine (2 on sage.math, 2014)
rel
AUTHORS:

« Eric Larson (2012-05-28): iniial version
« Eric Larson (2014-08-13): added isogeny_bound function.
« John Cremona (2016, 2017): various efficiency improvements to _semistable_reducible_primes

In 2015, Sutherland computes pg ¢(Ggp)!



Some related open problems for elliptic curves

@ Serre’s uniformity question
Is there an upper bound N on the largest nonsurjective prime
for all E with Endg(E) = Z? Conjectured N = 37.

© Mazur's Program B

For each subgroup H of GLy(Z), can you find all the £/Q
such that Im pg is contained in H?



INPUT
C/Q is a genus 2 curve with affine equation y? = f(x),
A = Jac(C) with Endg(A) = Z.

pag Gy — Aut(A[L], (-, -)) = GSpy(Fy)

Serre: pay is surjective for all but finitely many primes /.

OUTPUT

The complete list of primes ¢ for which pa is nonsurjective.

Our goal



Available now on LMFDB's Olive Branch

We would welcome your feedback and suggestions!

Galois representations
The mod ¢ Galois representation has maximal image GSp(d, ¥,) for all primes ¢ except those listed.

prime Image type Witnesses Is Torsion prime?
2 7 [-1] no
13 nss.2p2 [0, 3] no

.Imfdb.xyz

see it live at 72&6 (%w;-,'gmck

https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1


https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1
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© Two step approach to computing exceptional primes for abelian
surfaces
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Method

@ Generate ¢: Produce a finite list that contains all primes ¢ for
which pa ¢ is nonsurjective.

@ Weed out £: Given a prime ¢, determine if pa ¢ is nonsurjective.

Ingredients:

e Mitchell's 1914 classification of maximal subgroups of
GSpy(Fy).

e Dieulefait’s 2002 criteria for pa ¢(Gg) to be contained in each
of these subgroups.

e Characteristic polynomials of Frobenius at various auxiliary
primes.



Classification of maximal subgroups of GSp,(Fy)

@ Stabilizers of linear subspaces.

@ Stabilizer of a hyperbolic or elliptic congruence.
© Stabilizer of a quadric.

@ Stabilizer of a twisted cubic.

@ Exceptional maximal subgroups.

Key Fact:
PAy is nonsurjective < Im(pay) is contained in one of these
subgroups.



Notation

N:  conductor of A
p:  prime of good reduction for A
Frob,: a Frobenius element at p
LpA(T): integral characteristic polynomial for Frob,

Sy(To(d)):  space of weight 2 cusp forms of level d

ap(f):  p™ Fourier coefficient of a cusp form f



Step 1: Producing a finite list of primes

Borel Example The 2 + 2 self-dual summands case, i.e.
@ /is a prime of good reduction for A,
® Day =M D2, with,
@ dim(m1) = dim(my) = 2 and det(m1) = det(m2) = cyc,.



Step 1: Producing a finite list of primes

Borel Example The 2 + 2 self-dual summands case, i.e.

@ /is a prime of good reduction for A,
® Dy =T D2, with,
@ dim(m1) = dim(my) = 2 and det(m1) = det(m2) = cyc,.

Serre's conjecture (Khare-Wintenberger theorem):
Modularity of GLy(Fy)-Galois representations =

3 weight 2 cusp forms ~ fi,f,  such that 7; = pr .

Furthermore, we can control the levels of f; and . More precisely,

the product of the levels of f; and £, divides the conductor N of A.
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Test for £ in the 2 + 2 self dual summands case

Khare-Wintenberger theorem = p4 , = pf ¢ @ ppy 0

Observation: If p is a prime of good reduction for A, then
Lpa(T) = (T? = ap(A) T + p)(T? — ap(R) T + p) mod £.

Test for finding ¢:

By control of level, there is some d dividing N, d < v/N, and some
f € S(To(d)), such that

¢ divides pRes (Lo a(T), T> — ap(F) T + p) .



Step 2: Eliminating surjective primes by sampling Frob,

For ¢ > 7, we employ the following purely group theoretical
proposition, which is a consequence of Mitchell's classification.

Proposition

For a non-exceptional subgroup G < GSp,(F,) with surjective
similitude character, we have that G = GSp,(FFy) if and only if
there exists matrices M, N € G with

e charpoly(M) is irreducible, and

e trace N s 0 and charpoly(N) has a linear factor with
multiplicity 1.

For primes ¢ < 7, we also take into account exceptional subgroups.
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© Preliminary results and further questions



Nonsurjectivity at £ = 2

C:y? =f(x), deg(f)=6.
Observe:

pa2: Ggp — GSpy(F2) = Se is exactly Gy C Roots of f(x).

Results:

@ 63,107 curves in LMFDB with Endg(Jac(C)) = Z.

@ 42,230 curves were nonsurjective at 2.



Which odd primes ¢ were nonsurjective?

Sample space = 63,107 curves in LMFDB with Endg(Jac(C)) = Z.

How many curves were nonmaximal at each prime?

3558
3500

3000

2500

2000

Number of curves

1500

1000 939

3 5 7 11 13 17 29



Possible reasons for nonsurjectivity



Possible reasons for nonsurjectivity

@ Jac(C) has rational ¢-torsion.

e Jac(C) is isogenous to the Jacobian of a curve with rational
{-torsion.

e 77



Nonsurjectivity explained by torsion

Sample space = 63,107 curves in LMFDB with Endg(Jac(C)) = Z.

How many curves were nonmaximal at each prime due to torsion?

3558 = non torsion
3500 I torsion
3000
2500
4
3
3 2000
5
k1
3
£
Z 1500
1000 939
500
2
0 L .
3 5 7 11 13 17 29




(]

(]

An interesting example not explained by torsion

Running our code on the curve below with LMFDB label
8450.a2.8450.1 took 4.8 seconds.

Y2+ (x+ 1y = x>+ x* —0x> — 5x% 4+ 21x.

The list of possibly nonsurjective primes generated by Step 1 is

2,3,5,7,13.

Running Step 2 by testing Frob, for all p < 10,000, we
narrowed this list to
2,13.

Interesting because the Jacobian has no rational torsion!



Further questions

@ Are there effective upper bounds on how Frobenius elements
to sample before we hit every conjugacy class in pa ¢(Gg)?

e Can we compute pa¢(Gg) when £ is not surjective?
o dim(A) > 27

@ Other number fields?
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