# Computing exceptional primes associated to Galois representations of abelian surfaces

Barinder Singh Banwait, Armand Brumer, Hyun Jong Kim, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

VANTAGE December 8th, 2020

## Outline

Galois actions & Serre's open image theorem

2 Two step approach to computing exceptional primes for abelian surfaces

Preliminary results and further questions

# Galois actions: Why study them?

| Source                         | $\mathit{G}_{\mathbb{Q}} := Gal(\overline{\mathbb{Q}}/\mathbb{Q})	ext{-set}$                                  | Some geometric information in $G_{\mathbb{Q}}$ -action |
|--------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $f(x) \in \mathbb{Q}[x]$       | Roots of $f$ in $\overline{\mathbb{Q}}$                                                                       |                                                        |
| $A/\mathbb{Q}$ abelian variety | $\ell$ -torsion of $A(\overline{\mathbb{Q}})$                                                                 |                                                        |
| $X/\mathbb{Q}$ nice variety    | $\pi_1^{\acute{e}t}(X_{\overline{\mathbb{Q}}}), H^1_{\acute{e}t}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ |                                                        |

# Galois actions: Why study them?

| Source                         | $G_{\mathbb{Q}}:=Gal(\overline{\mathbb{Q}}/\mathbb{Q})	ext{-set}$                                             | Some geometric information in $G_{\mathbb{Q}}$ -action   |
|--------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $f(x) \in \mathbb{Q}[x]$       | Roots of $f$ in $\overline{\mathbb{Q}}$                                                                       |                                                          |
| $A/\mathbb{Q}$ abelian variety | $\ell$ -torsion of $A(\overline{\mathbb{Q}})$                                                                 | Knows about reduction type of $A \mod \ell$              |
| $X/\mathbb{Q}$ nice variety    | $\pi_1^{\acute{e}t}(X_{\overline{\mathbb{Q}}}), H^1_{\acute{e}t}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ | Controls location of rational/torsion points on <i>X</i> |

## Galois actions: Size?

#### Common Belief:

 $\mathsf{Im}(\mathit{G}_{\mathbb{Q}})$  should be as large as possible,

Galois actions: Size?

#### Common Belief:

 $Im(G_{\mathbb{Q}})$  should be as large as possible, unless there is a good reason not to be.

#### Restriction:

Galois actions: Size?

#### Common Belief:

 $Im(G_{\mathbb{Q}})$  should be as large as possible, unless there is a good reason not to be.

#### Restriction:

A finite index subgroup of  $G_{\mathbb{Q}}$  commutes with  $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ -action.

#### Common Belief:

 $Im(G_{\mathbb{Q}})$  should be as large as possible, unless there is a good reason not to be.

#### Restriction:

A finite index subgroup of  $G_{\mathbb{Q}}$  commutes with  $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ -action.  $Larger\ \operatorname{End}_{\overline{\mathbb{Q}}}(A) \Longrightarrow smaller\ \operatorname{Im}(G_{\mathbb{Q}}).$ 

#### Common Belief:

 $Im(G_{\mathbb{Q}})$  should be as large as possible, unless there is a good reason not to be.

#### Restriction:

A finite index subgroup of  $G_{\mathbb{Q}}$  commutes with  $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ -action.  $Larger\ \operatorname{End}_{\overline{\mathbb{Q}}}(A) \Longrightarrow smaller\ \operatorname{Im}(G_{\mathbb{Q}}).$ 

## Question:

If 
$$\operatorname{End}_{\overline{\mathbb{O}}}(A) = \mathbb{Z}$$
, is  $\operatorname{Im}(G_{\mathbb{Q}})$  large?

# Open image theorems for abelian varieties

Theorem (Serre, 1972, dim A = 1)

If  $E/\mathbb{Q}$  is an elliptic curve,  $\operatorname{End}_{\overline{\mathbb{Q}}}(E) = \mathbb{Z}$ , then

$$\rho_E \colon G_{\mathbb{Q}} \to \operatorname{Aut}(\underline{\lim} E[m]) = \operatorname{GL}_2(\hat{\mathbb{Z}})$$

has open image.

#### Remarks:

- Also true when dim A is 2,6 or odd. (Serre, 1986 letter)
- False when dim A=4. Mumford gave a counterexample. ( $G_{\mathbb{Q}}$ -action has to preserve additional symmetries for some A.)
- Also holds for abelian varieties over number fields.

# Open image theorems for abelian varieties

Theorem (Serre, 1972, dim A = 1)

If  $E/\mathbb{Q}$  is an elliptic curve,  $\operatorname{End}_{\overline{\mathbb{Q}}}(E) = \mathbb{Z}$ , then

$$\rho_E \colon G_{\mathbb{Q}} \to \operatorname{Aut}(\varprojlim E[m]) = \operatorname{GL}_2(\hat{\mathbb{Z}})$$

has open image. In particular,  $\rho_{E,\ell}$  is surjective for almost all  $\ell$ .

#### Remarks:

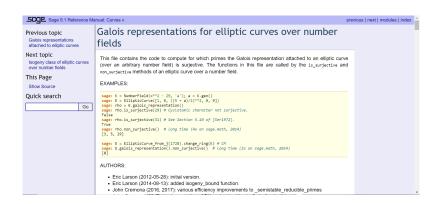
- Also true when dim A is 2,6 or odd. (Serre, 1986 letter)
- False when dim A=4. Mumford gave a counterexample. ( $G_{\mathbb{Q}}$ -action has to preserve additional symmetries for some A.)
- Also holds for abelian varieties over number fields.

# Some follow up questions

• Given E, can you effectively compute all the *exceptional*  $\ell$  where  $\rho_{E,\ell}$  is nonsurjective?

# Some follow up questions

• Given E, can you effectively compute all the exceptional  $\ell$  where  $\rho_{E,\ell}$  is nonsurjective? Yes!



In 2015, Sutherland computes  $\rho_{E,\ell}(G_{\mathbb{Q}})!$ 

# Some related open problems for elliptic curves

- ② Serre's uniformity question Is there an upper bound N on the largest nonsurjective prime for all E with  $\operatorname{End}_{\overline{\mathbb{Q}}}(E)=\mathbb{Z}$ ? Conjectured N=37.
- **3** Mazur's Program B For each subgroup H of  $GL_2(\hat{\mathbb{Z}})$ , can you find all the  $E/\mathbb{Q}$  such that  $\operatorname{Im} \rho_E$  is contained in H?

#### **INPUT**

 $C/\mathbb{Q}$  is a genus 2 curve with affine equation  $y^2 = f(x)$ ,  $A = \operatorname{Jac}(C)$  with  $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$ .

$$\rho_{A,\ell}: \mathit{G}_{\mathbb{Q}} \to \operatorname{Aut}(A[\ell], \langle \cdot, \cdot \rangle) = \operatorname{\mathsf{GSp}}_4(\mathbb{F}_\ell)$$

Serre:  $\rho_{A,\ell}$  is surjective for all but finitely many primes  $\ell$ .

### **OUTPUT**

The complete list of primes  $\ell$  for which  $\rho_{A,\ell}$  is nonsurjective.

## Available now on LMFDB's Olive Branch

We would welcome your feedback and suggestions!

#### **Galois representations**

The mod  $\ell$  Galois representation has maximal image  $\mathrm{GSp}(4,\mathbb{F}_\ell)$  for all primes  $\ell$  except those listed.

| prime | Image type | Witnesses | Is Torsion prime? |
|-------|------------|-----------|-------------------|
| 2     | ?          | [-1]      | no                |
| 13    | nss.2p2    | [0, 3]    | no                |



https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1

## Outline

Galois actions & Serre's open image theorem

2 Two step approach to computing exceptional primes for abelian surfaces

Preliminary results and further questions

## Method

- **①** Generate  $\ell$ : Produce a finite list that contains all primes  $\ell$  for which  $\rho_{A,\ell}$  is nonsurjective.
- **2** Weed out  $\ell$ : Given a prime  $\ell$ , determine if  $\rho_{A,\ell}$  is nonsurjective.

- **①** Generate  $\ell$ : Produce a finite list that contains all primes  $\ell$  for which  $\rho_{A,\ell}$  is nonsurjective.
- **2** Weed out  $\ell$ : Given a prime  $\ell$ , determine if  $\rho_{A,\ell}$  is nonsurjective.

## Ingredients:

- Mitchell's 1914 classification of maximal subgroups of  $\mathsf{GSp}_4(\mathbb{F}_\ell)$ .
- Dieulefait's 2002 criteria for  $\rho_{A,\ell}(G_{\mathbb{Q}})$  to be contained in each of these subgroups.
- Characteristic polynomials of Frobenius at various auxiliary primes.

# Classification of maximal subgroups of $\mathsf{GSp}_4(\mathbb{F}_\ell)$

- Stabilizers of linear subspaces.
- 2 Stabilizer of a hyperbolic or elliptic congruence.
- 3 Stabilizer of a quadric.
- 4 Stabilizer of a twisted cubic.
- 5 Exceptional maximal subgroups.

## Key Fact:

 $\rho_{A,\ell}$  is nonsurjective  $\Leftrightarrow \operatorname{Im}(\rho_{A,\ell})$  is contained in one of these subgroups.

## Notation

N: conductor of A

p: prime of good reduction for A

Frob<sub>p</sub>: a Frobenius element at p

 $L_{p,A}(T)$ : integral characteristic polynomial for Frob<sub>p</sub>

 $S_2(\Gamma_0(d))$ : space of weight 2 cusp forms of level d

 $a_p(f)$ :  $p^{th}$  Fourier coefficient of a cusp form f

# Step 1: Producing a finite list of primes

Borel Example The 2 + 2 self-dual summands case, i.e.

- $\ell$  is a prime of good reduction for A,
- $\overline{\rho}_{A,\ell} \cong \pi_1 \oplus \pi_2$ , with,
- $\dim(\pi_1) = \dim(\pi_2) = 2$  and  $\det(\pi_1) = \det(\pi_2) = \operatorname{cyc}_{\ell}$ .

# Step 1: Producing a finite list of primes

Borel Example The 2 + 2 self-dual summands case, i.e.

- $\ell$  is a prime of good reduction for A,
- $\overline{\rho}_{A,\ell} \cong \pi_1 \oplus \pi_2$ , with,
- $\dim(\pi_1) = \dim(\pi_2) = 2$  and  $\det(\pi_1) = \det(\pi_2) = \operatorname{cyc}_{\ell}$ .

## Serre's conjecture (Khare-Wintenberger theorem):

Modularity of  $GL_2(\overline{\mathbb{F}}_{\ell})$ -Galois representations  $\Longrightarrow$ 

 $\exists$  weight 2 cusp forms  $f_1, f_2$  such that  $\pi_i \cong \rho_{f_i,\ell}$ .

Furthermore, we can control the levels of  $f_1$  and  $f_2$ . More precisely,

the product of the levels of  $f_1$  and  $f_2$  divides the conductor N of A.

## Test for $\ell$ in the 2 + 2 self dual summands case

 $\mathsf{Khare\text{-}Wintenberger\ theorem} \Rightarrow \overline{\rho}_{\mathsf{A},\ell} \cong \rho_{\mathsf{f_1},\ell} \oplus \rho_{\mathsf{f_2},\ell}.$ 

Observation:

Test for finding  $\ell$ :

 $\ell$  divides

## Test for $\ell$ in the 2 + 2 self dual summands case

Khare-Wintenberger theorem  $\Rightarrow \overline{\rho}_{A,\ell} \cong \rho_{f_1,\ell} \oplus \rho_{f_2,\ell}$ .

Observation: If p is a prime of good reduction for A, then

$$L_{p,A}(T) = (T^2 - a_p(f_1)T + p)(T^2 - a_p(f_2)T + p) \mod \ell.$$

Test for finding  $\ell$ :

 $\ell$  divides

## Test for $\ell$ in the 2 + 2 self dual summands case

Khare-Wintenberger theorem  $\Rightarrow \overline{\rho}_{A,\ell} \cong \rho_{f_1,\ell} \oplus \rho_{f_2,\ell}$ .

Observation: If p is a prime of good reduction for A, then

$$L_{p,A}(T) = (T^2 - a_p(f_1)T + p)(T^2 - a_p(f_2)T + p) \mod \ell$$

## Test for finding $\ell$ :

By control of level, there is some d dividing  $N, d \leq \sqrt{N}$ , and some  $f \in S_2(\Gamma_0(d))$ , such that

$$\ell$$
 divides  $p$ Res  $(L_{p,A}(T), T^2 - a_p(f)T + p)$ .

# Step 2: Eliminating surjective primes by sampling $Frob_p$

For  $\ell > 7$ , we employ the following purely group theoretical proposition, which is a consequence of Mitchell's classification.

## Proposition

For a non-exceptional subgroup  $G \subseteq \mathsf{GSp_4}(\mathbb{F}_\ell)$  with surjective similitude character, we have that  $G = \mathsf{GSp_4}(\mathbb{F}_\ell)$  if and only if there exists matrices  $M, N \in G$  with

- charpoly(M) is irreducible, and
- trace N ≠ 0 and charpoly(N) has a linear factor with multiplicity 1.

For primes  $\ell \leq 7$ , we also take into account exceptional subgroups.

## Outline

Galois actions & Serre's open image theorem

2 Two step approach to computing exceptional primes for abelian surfaces

Preliminary results and further questions

# Nonsurjectivity at $\ell = 2$

C: 
$$y^2 = f(x)$$
,  $\deg(f) = 6$ .

#### Observe:

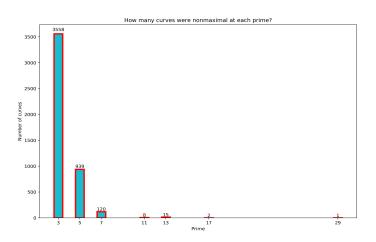
$$\rho_{A,2} \colon G_{\mathbb{Q}} \to \mathsf{GSp}_4(\mathbb{F}_2) \cong S_6$$
 is exactly  $G_{\mathbb{Q}} \subset \mathsf{Roots}$  of  $f(x)$ .

#### Results:

- 63, 107 curves in LMFDB with  $\operatorname{End}_{\overline{\mathbb{O}}}(\operatorname{Jac}(C)) = \mathbb{Z}$ .
- 42,230 curves were nonsurjective at 2.

# Which odd primes $\ell$ were nonsurjective?

Sample space = 63,107 curves in LMFDB with  $\operatorname{End}_{\overline{\mathbb{O}}}(\operatorname{Jac}(C)) = \mathbb{Z}$ .





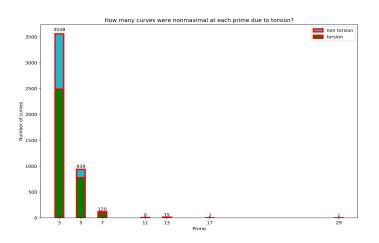
# Possible reasons for nonsurjectivity

- Jac(C) has rational  $\ell$ -torsion.
- $\operatorname{Jac}(C)$  is isogenous to the Jacobian of a curve with rational  $\ell\text{-torsion}.$

• ??

# Nonsurjectivity explained by torsion

Sample space = 63,107 curves in LMFDB with  $\operatorname{End}_{\overline{\mathbb{O}}}(\operatorname{Jac}(C)) = \mathbb{Z}$ .



# An interesting example not explained by torsion

 Running our code on the curve below with LMFDB label 8450.a.8450.1 took 4.8 seconds.

$$y^2 + (x + 1)y = x^5 + x^4 - 9x^3 - 5x^2 + 21x$$
.

• The list of possibly nonsurjective primes generated by Step 1 is

• Running Step 2 by testing  $\operatorname{Frob}_p$  for all p < 10,000, we narrowed this list to

Interesting because the Jacobian has no rational torsion!

## Further questions

- Are there effective upper bounds on how Frobenius elements to sample before we hit every conjugacy class in  $\rho_{A,\ell}(G_{\mathbb{Q}})$ ?
- Can we compute  $\rho_{A,\ell}(G_{\mathbb{Q}})$  when  $\ell$  is not surjective?
- $\dim(A) > 2$ ?
- Other number fields?