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Some enumerative problems in algebraic geometry

Fix a field k .

How many zeroes does a degree d polynomial have?

d if k = C.

How many lines lie on a smooth cubic surface?

27 if k = C.

How many lines meet four lines in P3?

2 if k = C.

Question 1: What if k 6= C?

Question 2: Extra arithmetic-geometric data when k 6= C?
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Revisiting zeroes of a real polynomial
Geometric type and repackaging

Assume d even.
Let f ∈ R[x ] of degree d , all zeroes multiplicity 1 and real.

Observe: # Type 1 real zeroes = # Type −1 real zeroes

A1 − reformulation:
∑

P:f (P)=0

Type(P) =
d

2
(〈1〉+ 〈−1〉) ∈ GW(R)
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The Grothendieck-Witt group of a field

GW(k) :=

group completion of monoid (under ⊕ orthogonal direct sum)

of nondegenerate symmetric bilinear forms over k (upto ∼=)

Generators
〈a〉 for a ∈ k∗/(k∗)2

〈a〉 : k × k → k

(x , y) 7→ axy

Relations

〈a〉+ 〈b〉 = 〈ab(a + b)〉+ 〈a + b〉 for all a, b with a, b, a + b all 6= 0

⇒ 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉 =: h “hyperbolic form”

Remark: W (k) = GW(k)/(h)
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Examples of GW(k)

GW(C)
∼−−−−−−−−−→

rank/dimension
Z

GW(R) ↪−−−−−−−−→
rank,signature

Z× Z

GW(Fq)
∼−−−−−−−−−−→

rank, discriminant
Z× F∗q/(F∗q)2 ' Z× Z/2Z.



Grothendieck-Witt groups and field extensions

Extension: If k ⊂ L is an extension of fields, then we have a map

GW(k)→ GW(L)

(V , q) 7→ (V ⊗ L, q ⊗ L)

Trace/Transfer: For k ⊂ L a finite separable extension, we have

TrL/k : GW(L)→ GW(k)

(V × V → L) 7→ (V × V → L
TrL/k−−−→ k)
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Solutions to enumerative problems as Chern classes

Fix a field k .

Number of zeroes of an even degree d polynomial

=ctop(V)
X = P1, dim(X ) = 1
V = O(d), rank(V) = 1.

Number of lines lie on a smooth cubic surface

=ctop(V)
X = Gr(2, 4), dim(X ) = 4
V = Sym3 S∨, rank(V) = 4.

Number of lines meeting four lines in P3

=ctop(V)
X = Gr(2, 4), , dim(X ) = 4
V =

∑4
i=1 Λ2S∨, rank(V) = 4.

Question:
Is there an enriched ctop(V) ∈ GW(k) when dim(X ) = rank(V)?
Yes! If V is relatively oriented.
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Geometric type of a line meeting four lines

Let L be a line meeting four lines L1, L2, L3, L4.
Assume all lines are generic and that char(k) 6= 2.

Question: Can we define Type(L) ∈ GW(k) using geometric data?

Answer: Yes! Type(L) = Trk(L)/k〈λL − µL〉.

λL = Cross-ratio of L ∩ Li µL = Cross-ratio of Span(L, Li )
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An arithmetic count of lines meeting four lines

Type(L) = Trk(L)/k〈λL − µL〉.

Theorem (S-Wickelgren)

Assuming that all four lines Li are defined over k, we have∑
L:L∩Li 6=∅ ∀i

Type(L) = 〈1〉+ 〈−1〉 ∈ GW(k)



Proof sketch

X = Gr(2, 4),V =
∑4

i=1 Λ2S∨
σ a rational section of V coming from L1, L2, L3, L4.

Kass-Wickelgren: e(V) =
∑

P:σ(P)=0 degP(σ) ∈ GW(k).

Proof Sketch:

Show for special choice of explicit section σ of V, we have

degL(σ) = Trk(L)/k〈λL − µL〉.

If L and L′ are the two lines that meet all four lines, then

(λL, µL) = (µL′ , λL′).

Use 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉.



Arithmetic restrictions from enriched counts

Claim: If k = Q, there does not exist a pair L, L′ of 2
conjugate lines defined over Q(

√
3) meeting four lines defined over

Q with 〈λL − µL〉 = 〈5〉.

Main Theorem ⇒ TrQ(
√
3)/Q〈5〉 = 〈1〉+ 〈−1〉.

Left hand side: In the Q-basis (1,
√

3) for Q(
√

3), the matrix for
the bilinear form TrQ(

√
3)/Q〈5〉 is[

2 · 5 0
0 2 · 5 · 3

]
⇒ disc(TrQ(

√
3)/Q〈5〉) = 300.

Right hand side: disc(〈1〉+ 〈−1〉) = −1.

Contradiction: 300 6= −1 in Q∗/(Q∗)2.


