An arithmetic count of lines meeting four lines

Padmavathi Srinivasan

University of Georgia

Special session on Geometry and Topology in Arithmetic September 14, 2019

Some enumerative problems in algebraic geometry

Fix a field k.

- How many zeroes does a degree d polynomial have?
- How many lines lie on a smooth cubic surface?
- How many lines meet four lines in \mathbb{P}^{3} ?

Some enumerative problems in algebraic geometry

Fix a field k.

- How many zeroes does a degree d polynomial have? d if $k=\mathbb{C}$.
- How many lines lie on a smooth cubic surface? 27 if $k=\mathbb{C}$.
- How many lines meet four lines in \mathbb{P}^{3} ? 2 if $k=\mathbb{C}$.

Some enumerative problems in algebraic geometry

Fix a field k.

- How many zeroes does a degree d polynomial have? d if $k=\mathbb{C}$.
- How many lines lie on a smooth cubic surface? 27 if $k=\mathbb{C}$.
- How many lines meet four lines in \mathbb{P}^{3} ? 2 if $k=\mathbb{C}$.

Question 1: What if $k \neq \mathbb{C}$?

Some enumerative problems in algebraic geometry

Fix a field k.

- How many zeroes does a degree d polynomial have? d if $k=\mathbb{C}$.
- How many lines lie on a smooth cubic surface? 27 if $k=\mathbb{C}$.
- How many lines meet four lines in \mathbb{P}^{3} ? 2 if $k=\mathbb{C}$.

Question 1: What if $k \neq \mathbb{C}$?
Question 2: Extra arithmetic-geometric data when $k \neq \mathbb{C}$?

Revisiting zeroes of a real polynomial

Geometric type and repackaging

Assume d even.
Let $f \in \mathbb{R}[x]$ of degree d, all zeroes multiplicity 1 and real.

Revisiting zeroes of a real polynomial

Geometric type and repackaging

Assume d even.
Let $f \in \mathbb{R}[x]$ of degree d, all zeroes multiplicity 1 and real.

Observe: \# Type 1 real zeroes $=\#$ Type -1 real zeroes

Revisiting zeroes of a real polynomial

Geometric type and repackaging

Assume d even.
Let $f \in \mathbb{R}[x]$ of degree d, all zeroes multiplicity 1 and real.

Observe: \# Type 1 real zeroes $=$ \# Type -1 real zeroes

\mathbb{A}^{1} - reformulation: $\sum_{P: f(P)=0} \operatorname{Type}(P)=\frac{d}{2}(\langle 1\rangle+\langle-1\rangle) \in \mathrm{GW}(\mathbb{R})$

The Grothendieck-Witt group of a field

GW(k) :=

The Grothendieck-Witt group of a field

GW(k) :=
nondegenerate symmetric bilinear forms over k (upto \cong)

The Grothendieck-Witt group of a field

$$
\begin{aligned}
\mathrm{GW}(k):= & \text { monoid (under } \oplus \text { orthogonal direct sum) } \\
& \text { of nondegenerate symmetric bilinear forms over } k(\text { upto } \cong)
\end{aligned}
$$

The Grothendieck-Witt group of a field

GW $(k):=$ group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

The Grothendieck-Witt group of a field

GW $(k):=$ group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$
\begin{gathered}
\langle a\rangle \text { for } a \in k^{*} /\left(k^{*}\right)^{2} \\
\langle a\rangle: k \times k \rightarrow k \\
(x, y) \mapsto a x y
\end{gathered}
$$

The Grothendieck-Witt group of a field

$\mathrm{GW}(k):=$ group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$
\begin{gathered}
\langle a\rangle \text { for } a \in k^{*} /\left(k^{*}\right)^{2} \\
\langle a\rangle: k \times k \rightarrow k \\
(x, y) \mapsto a x y
\end{gathered}
$$

Relations
$\langle a\rangle+\langle b\rangle=\langle a b(a+b)\rangle+\langle a+b\rangle$ for all a, b with $a, b, a+b$ all $\neq 0$

The Grothendieck-Witt group of a field

GW $(k):=$ group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$
\begin{gathered}
\langle a\rangle \text { for } a \in k^{*} /\left(k^{*}\right)^{2} \\
\langle a\rangle: k \times k \rightarrow k \\
(x, y) \mapsto a x y
\end{gathered}
$$

Relations
$\langle a\rangle+\langle b\rangle=\langle a b(a+b)\rangle+\langle a+b\rangle$ for all a, b with $a, b, a+b$ all $\neq 0$
$\Rightarrow\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h$ "hyperbolic form"

The Grothendieck-Witt group of a field

GW $(k):=$ group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$
\begin{gathered}
\langle a\rangle \text { for } a \in k^{*} /\left(k^{*}\right)^{2} \\
\langle a\rangle: k \times k \rightarrow k \\
(x, y) \mapsto a x y
\end{gathered}
$$

Relations
$\langle a\rangle+\langle b\rangle=\langle a b(a+b)\rangle+\langle a+b\rangle$ for all a, b with $a, b, a+b$ all $\neq 0$ $\Rightarrow\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h$ "hyperbolic form"

Remark: $W(k)=\mathrm{GW}(k) /(h)$

Examples of GW(k)

$$
\mathrm{GW}(\mathbb{C}) \xrightarrow[\text { rank } / \text { dimension }]{\sim} \mathbb{Z}
$$

$\mathrm{GW}(\mathbb{R}) \underset{\text { rank,signature }}{ } \mathbb{Z} \times \mathbb{Z}$
$\mathrm{GW}\left(\mathbb{F}_{q}\right) \xrightarrow[\text { rank, discriminant }]{\sim} \mathbb{Z} \times \mathbb{F}_{q}^{*} /\left(\mathbb{F}_{q}^{*}\right)^{2} \simeq \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Grothendieck-Witt groups and field extensions

Extension: If $k \subset L$ is an extension of fields, then we have a map

$$
\begin{aligned}
\mathrm{GW}(k) & \rightarrow \mathrm{GW}(L) \\
(V, q) & \mapsto(V \otimes L, q \otimes L)
\end{aligned}
$$

Grothendieck-Witt groups and field extensions

Extension: If $k \subset L$ is an extension of fields, then we have a map

$$
\begin{aligned}
\mathrm{GW}(k) & \rightarrow \mathrm{GW}(L) \\
(V, q) & \mapsto(V \otimes L, q \otimes L)
\end{aligned}
$$

Trace/Transfer: For $k \subset L$ a finite separable extension, we have

$$
\begin{aligned}
& \operatorname{Tr}_{L / k}: \mathrm{GW}(L) \rightarrow \mathrm{GW}(k) \\
& (V \times V \rightarrow L) \mapsto\left(V \times V \rightarrow L \xrightarrow{\operatorname{Tr}_{L / k}} k\right)
\end{aligned}
$$

Solutions to enumerative problems as Chern classes

Fix a field k.

- Number of zeroes of an even degree d polynomial
- Number of lines lie on a smooth cubic surface
- Number of lines meeting four lines in \mathbb{P}^{3}

Solutions to enumerative problems as Chern classes

Fix a field k.

- Number of zeroes of an even degree d polynomial $X=\mathbb{P}^{1}, \operatorname{dim}(X)=1$ $\mathcal{V}=\mathcal{O}(d), \operatorname{rank}(\mathcal{V})=1$.
- Number of lines lie on a smooth cubic surface
$X=\operatorname{Gr}(2,4), \operatorname{dim}(X)=4$
$\mathcal{V}=\operatorname{Sym}^{3} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.
- Number of lines meeting four lines in \mathbb{P}^{3}
$X=\operatorname{Gr}(2,4), \operatorname{dim}(X)=4$
$\mathcal{V}=\sum_{i=1}^{4} \Lambda^{2} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.

Solutions to enumerative problems as Chern classes

Fix a field k.

- Number of zeroes of an even degree d polynomial $=c^{\text {top }}(\mathcal{V})$ $X=\mathbb{P}^{1}, \operatorname{dim}(X)=1$ $\mathcal{V}=\mathcal{O}(d), \operatorname{rank}(\mathcal{V})=1$.
- Number of lines lie on a smooth cubic surface $=c^{\text {top }}(\mathcal{V})$
$X=\operatorname{Gr}(2,4), \operatorname{dim}(X)=4$
$\mathcal{V}=\operatorname{Sym}^{3} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.
- Number of lines meeting four lines in $\mathbb{P}^{3}=c^{\text {top }}(\mathcal{V})$ $X=\operatorname{Gr}(2,4),, \operatorname{dim}(X)=4$
$\mathcal{V}=\sum_{i=1}^{4} \Lambda^{2} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.

Solutions to enumerative problems as Chern classes

Fix a field k.

- Number of zeroes of an even degree d polynomial $=c^{\text {top }}(\mathcal{V})$ $X=\mathbb{P}^{1}, \operatorname{dim}(X)=1$ $\mathcal{V}=\mathcal{O}(d), \operatorname{rank}(\mathcal{V})=1$.
- Number of lines lie on a smooth cubic surface $=c^{\text {top }}(\mathcal{V})$
$X=\operatorname{Gr}(2,4), \operatorname{dim}(X)=4$
$\mathcal{V}=\operatorname{Sym}^{3} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.
- Number of lines meeting four lines in $\mathbb{P}^{3}=c^{\text {top }}(\mathcal{V})$
$X=\operatorname{Gr}(2,4),, \operatorname{dim}(X)=4$
$\mathcal{V}=\sum_{i=1}^{4} \Lambda^{2} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.

Question:
Is there an enriched $c^{\text {top }}(\mathcal{V}) \in G W(k)$ when $\operatorname{dim}(X)=\operatorname{rank}(\mathcal{V})$?

Solutions to enumerative problems as Chern classes

Fix a field k.

- Number of zeroes of an even degree d polynomial $=c^{\text {top }}(\mathcal{V})$ $X=\mathbb{P}^{1}, \operatorname{dim}(X)=1$ $\mathcal{V}=\mathcal{O}(d), \operatorname{rank}(\mathcal{V})=1$.
- Number of lines lie on a smooth cubic surface $=c^{\text {top }}(\mathcal{V})$
$X=\operatorname{Gr}(2,4), \operatorname{dim}(X)=4$
$\mathcal{V}=\operatorname{Sym}^{3} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.
- Number of lines meeting four lines in $\mathbb{P}^{3}=c^{\text {top }}(\mathcal{V})$
$X=\operatorname{Gr}(2,4),, \operatorname{dim}(X)=4$
$\mathcal{V}=\sum_{i=1}^{4} \Lambda^{2} \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V})=4$.
Question:
Is there an enriched $c^{\text {top }}(\mathcal{V}) \in \mathrm{GW}(k)$ when $\operatorname{dim}(X)=\operatorname{rank}(\mathcal{V})$?
Yes! If \mathcal{V} is relatively oriented.

Geometric type of a line meeting four lines

Let L be a line meeting four lines $L_{1}, L_{2}, L_{3}, L_{4}$.
Assume all lines are generic and that $\underline{\operatorname{char}(k) \neq 2}$.
Question: Can we define $\operatorname{Type}(L) \in \mathrm{GW}(k)$ using geometric data?

Geometric type of a line meeting four lines

Let L be a line meeting four lines $L_{1}, L_{2}, L_{3}, L_{4}$.
Assume all lines are generic and that $\underline{\operatorname{char}(k) \neq 2}$.
Question: Can we define $\operatorname{Type}(L) \in G W(k)$ using geometric data? Answer: $\operatorname{Yes!} \operatorname{Type}(L)=\operatorname{Tr}_{k(L) / k}\left\langle\lambda_{L}-\mu_{L}\right\rangle$.

$$
\lambda_{L}=\text { Cross-ratio of } L \cap L_{i} \quad \mu_{L}=\text { Cross-ratio of } \operatorname{Span}\left(L, L_{i}\right)
$$

An arithmetic count of lines meeting four lines

$$
\operatorname{Type}(L)=\operatorname{Tr}_{k(L) / k}\left\langle\lambda_{L}-\mu_{L}\right\rangle .
$$

Theorem (S-Wickelgren)
Assuming that all four lines L_{i} are defined over k, we have

$$
\sum_{L: L \cap L_{i} \neq \emptyset \forall i} \operatorname{Type}(L)=\langle 1\rangle+\langle-1\rangle \in \mathrm{GW}(k)
$$

$X=\operatorname{Gr}(2,4), \mathcal{V}=\sum_{i=1}^{4} \Lambda^{2} \mathcal{S}^{\vee}$
σ a rational section of \mathcal{V} coming from $L_{1}, L_{2}, L_{3}, L_{4}$.

Kass-Wickelgren: $e(\mathcal{V})=\sum_{P: \sigma(P)=0} \operatorname{deg}_{P}(\sigma) \in \operatorname{GW}(k)$.

Proof Sketch:

- Show for special choice of explicit section σ of \mathcal{V}, we have

$$
\operatorname{deg}_{L}(\sigma)=\operatorname{Tr}_{k(L) / k}\left\langle\lambda_{L}-\mu_{L}\right\rangle
$$

- If L and L^{\prime} are the two lines that meet all four lines, then

$$
\left(\lambda_{L}, \mu_{L}\right)=\left(\mu_{L^{\prime}}, \lambda_{L^{\prime}}\right)
$$

- Use $\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle$.

Arithmetic restrictions from enriched counts

Claim: If $k=\mathbb{Q}$, there does not exist a pair L, L^{\prime} of 2 conjugate lines defined over $\mathbb{Q}(\sqrt{3})$ meeting four lines defined over $\overline{\mathbb{Q}}$ with $\left\langle\lambda_{L}-\mu_{L}\right\rangle=\langle 5\rangle$.

Main Theorem $\Rightarrow \operatorname{Tr}_{\mathbb{Q}(\sqrt{3}) / \mathbb{Q}}\langle 5\rangle=\langle 1\rangle+\langle-1\rangle$.

Left hand side: In the \mathbb{Q}-basis $(1, \sqrt{3})$ for $\mathbb{Q}(\sqrt{3})$, the matrix for the bilinear form $\operatorname{Tr}_{\mathbb{Q}(\sqrt{3}) / \mathbb{Q}}\langle 5\rangle$ is

$$
\left[\begin{array}{cc}
2 \cdot 5 & 0 \\
0 & 2 \cdot 5 \cdot 3
\end{array}\right]
$$

$\Rightarrow \operatorname{disc}\left(\operatorname{Tr}_{\mathbb{Q}(\sqrt{3}) / \mathbb{Q}}\langle 5\rangle\right)=300$.

Contradiction: $300 \neq-1$ in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$.

