An arithmetic count of lines meeting four lines

Padmavathi Srinivasan

University of Georgia

Special session on Geometry and Topology in Arithmetic September 14, 2019

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Fix a field k.

• How many zeroes does a degree *d* polynomial have?

• How many lines lie on a smooth cubic surface?

• How many lines meet four lines in \mathbb{P}^3 ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fix a field k.

- How many zeroes does a degree *d* polynomial have?
 d if *k* = ℂ.
- How many lines lie on a smooth cubic surface? 27 if $k = \mathbb{C}$.
- How many lines meet four lines in P³?
 2 if k = C.

Fix a field k.

- How many zeroes does a degree *d* polynomial have?
 d if *k* = ℂ.
- How many lines lie on a smooth cubic surface? 27 if $k = \mathbb{C}$.
- How many lines meet four lines in P³?
 2 if k = C.

Question 1: What if $k \neq \mathbb{C}$?

Fix a field k.

- How many zeroes does a degree *d* polynomial have?
 d if *k* = ℂ.
- How many lines lie on a smooth cubic surface? 27 if $k = \mathbb{C}$.
- How many lines meet four lines in P³?
 2 if k = C.

Question 1: What if $k \neq \mathbb{C}$?

Question 2: Extra arithmetic-geometric data when $k \neq \mathbb{C}$?

Revisiting zeroes of a real polynomial

Geometric type and repackaging

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume *d* even. Let $f \in \mathbb{R}[x]$ of degree *d*, all zeroes multiplicity 1 and <u>real</u>.

Type +1 zero P Type -1 zero :

Revisiting zeroes of a real polynomial

Geometric type and repackaging

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume *d* even. Let $f \in \mathbb{R}[x]$ of degree *d*, all zeroes multiplicity 1 and <u>real</u>.

Observe: # Type 1 real zeroes = # Type -1 real zeroes

Revisiting zeroes of a real polynomial

Geometric type and repackaging

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assume *d* even. Let $f \in \mathbb{R}[x]$ of degree *d*, all zeroes multiplicity 1 and <u>real</u>.

Observe: # Type 1 real zeroes = # Type -1 real zeroes

$$\mathbb{A}^{1} - \text{reformulation:} \sum_{P:f(P)=0} \text{Type}(P) = \frac{d}{2} \left(\langle 1 \rangle + \langle -1 \rangle \right) \in \text{GW}(\mathbb{R})$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$GW(k) :=$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

GW(k) :=

nondegenerate symmetric bilinear forms over k (upto \cong)

monoid (under \oplus orthogonal direct sum)

of nondegenerate symmetric bilinear forms over k (upto \cong)

GW(k) :=

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

GW(k) := group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

GW(k) := group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

 $egin{aligned} &\langle a
angle \mbox{ for } a \in k^*/(k^*)^2 \ &\langle a
angle \colon k imes k o k \ &(x,y) \mapsto axy \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

GW(k) := group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$egin{aligned} &\langle a
angle \mbox{ for }a\in k^*/(k^*)^2\ &\langle a
angle\colon k imes k o k\ &(x,y)\mapsto axy \end{aligned}$$

Relations

 $\langle a \rangle + \langle b \rangle = \langle ab(a+b) \rangle + \langle a+b \rangle$ for all a, b with a, b, a+b all $\neq 0$

GW(k) := group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$egin{aligned} &\langle a
angle \mbox{ for }a\in k^*/(k^*)^2\ &\langle a
angle\colon k imes k o k\ &(x,y)\mapsto axy \end{aligned}$$

Relations

 $\langle a \rangle + \langle b \rangle = \langle ab(a+b) \rangle + \langle a+b \rangle$ for all a, b with a, b, a+b all $\neq 0$

 $\Rightarrow \langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle =: h$ "hyperbolic form"

(ロ)、

GW(k) := group completion of monoid (under \oplus orthogonal direct sum) of nondegenerate symmetric bilinear forms over k (upto \cong)

Generators

$$egin{aligned} &\langle a
angle \mbox{ for } a \in k^*/(k^*)^2 \ &\langle a
angle \colon k imes k o k \ &(x,y) \mapsto axy \end{aligned}$$

Relations

 $\langle a \rangle + \langle b \rangle = \langle ab(a+b) \rangle + \langle a+b \rangle$ for all a, b with a, b, a+b all $\neq 0$

 $\Rightarrow \langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle =: h$ "hyperbolic form"

Remark: W(k) = GW(k)/(h)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Examples of GW(k)

$$\mathsf{GW}(\mathbb{C}) \xrightarrow[\mathsf{rank/dimension}]{\sim} \mathbb{Z}$$

$$\mathsf{GW}(\mathbb{R}) \xrightarrow[rank, signature]{} \mathbb{Z} \times \mathbb{Z}$$

$$\operatorname{GW}(\mathbb{F}_q) \xrightarrow[\operatorname{rank, discriminant}]{\sim} \mathbb{Z} imes \mathbb{F}_q^* / (\mathbb{F}_q^*)^2 \simeq \mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}.$$

・ロト・「四ト・「田下・「田下・(日下

Grothendieck-Witt groups and field extensions

Extension: If $k \subset L$ is an extension of fields, then we have a map

 $\operatorname{GW}(k) o \operatorname{GW}(L)$ $(V,q) \mapsto (V \otimes L, q \otimes L)$

Grothendieck-Witt groups and field extensions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Extension: If $k \subset L$ is an extension of fields, then we have a map

 $\operatorname{GW}(k) o \operatorname{GW}(L)$ $(V,q) \mapsto (V \otimes L, q \otimes L)$

Trace/Transfer: For $k \subset L$ a finite separable extension, we have

$$\begin{array}{l} \operatorname{Tr}_{L/k} \colon \operatorname{GW}(L) \to \operatorname{GW}(k) \\ (V \times V \to L) \mapsto (V \times V \to L \xrightarrow{\operatorname{Tr}_{L/k}} k) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fix a field k.

• Number of zeroes of an even degree d polynomial

• Number of lines lie on a smooth cubic surface

 $\bullet\,$ Number of lines meeting four lines in \mathbb{P}^3

(日)(1)

Fix a field k.

- Number of zeroes of an even degree d polynomial $X = \mathbb{P}^1$, dim(X) = 1 $\mathcal{V} = \mathcal{O}(d)$, rank $(\mathcal{V}) = 1$.
- Number of lines lie on a smooth cubic surface X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = Sym^3 S^{\vee}, rank(\mathcal{V}) = 4.$
- Number of lines meeting four lines in \mathbb{P}^3 X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = \sum_{i=1}^{4} \Lambda^2 S^{\vee}, rank(\mathcal{V}) = 4.$

(日)(1)

Fix a field k.

- Number of zeroes of an even degree d polynomial = c^{top}(V)
 X = P¹, dim(X) = 1
 V = O(d), rank(V) = 1.
- Number of lines lie on a smooth cubic surface $=c^{top}(\mathcal{V})$ X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = Sym^3 S^{\vee}, rank(\mathcal{V}) = 4.$
- Number of lines meeting four lines in $\mathbb{P}^3 = c^{\text{top}}(\mathcal{V})$ $X = \text{Gr}(2, 4), \dim(X) = 4$ $\mathcal{V} = \sum_{i=1}^{4} \Lambda^2 \mathcal{S}^{\vee}, \operatorname{rank}(\mathcal{V}) = 4.$

Fix a field k.

- Number of zeroes of an even degree d polynomial $=c^{top}(\mathcal{V})$ $X = \mathbb{P}^1, \dim(X) = 1$ $\mathcal{V} = \mathcal{O}(d), \operatorname{rank}(\mathcal{V}) = 1.$
- Number of lines lie on a smooth cubic surface $=c^{top}(\mathcal{V})$ X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = Sym^3 S^{\vee}, rank(\mathcal{V}) = 4.$
- Number of lines meeting four lines in $\mathbb{P}^3 = c^{\text{top}}(\mathcal{V})$ X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = \sum_{i=1}^4 \Lambda^2 \mathcal{S}^{\vee}, \text{rank}(\mathcal{V}) = 4.$

Question:

Is there an enriched $c^{\text{top}}(\mathcal{V}) \in \text{GW}(k)$ when $\dim(X) = \text{rank}(\mathcal{V})$?

Fix a field k.

- Number of zeroes of an even degree d polynomial $=c^{top}(\mathcal{V})$ $X = \mathbb{P}^1, \dim(X) = 1$ $\mathcal{V} = \mathcal{O}(d), \operatorname{rank}(\mathcal{V}) = 1.$
- Number of lines lie on a smooth cubic surface $=c^{top}(\mathcal{V})$ X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = Sym^3 S^{\vee}, rank(\mathcal{V}) = 4.$
- Number of lines meeting four lines in $\mathbb{P}^3 = c^{\text{top}}(\mathcal{V})$ X = Gr(2, 4), dim(X) = 4 $\mathcal{V} = \sum_{i=1}^4 \Lambda^2 \mathcal{S}^{\vee}, \text{rank}(\mathcal{V}) = 4.$

Question:

Is there an enriched $c^{\text{top}}(\mathcal{V}) \in \text{GW}(k)$ when $\dim(X) = \text{rank}(\mathcal{V})$? Yes! If \mathcal{V} is relatively oriented.

Geometric type of a line meeting four lines

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let *L* be a line meeting four lines L_1, L_2, L_3, L_4 . Assume all lines are generic and that $char(k) \neq 2$.

Question: Can we define $Type(L) \in GW(k)$ using geometric data?

Geometric type of a line meeting four lines

Let *L* be a line meeting four lines L_1, L_2, L_3, L_4 . Assume all lines are generic and that $char(k) \neq 2$.

Question: Can we define Type(L) \in GW(k) using geometric data? Answer: Yes! Type(L) = Tr_{k(L)/k} $\langle \lambda_L - \mu_L \rangle$.

 $\lambda_L = \text{Cross-ratio of } L \cap L_i \qquad \mu_L = \text{Cross-ratio of Span}(L, L_i)$

An arithmetic count of lines meeting four lines

$$\mathsf{Type}(L) = \mathsf{Tr}_{k(L)/k} \langle \lambda_L - \mu_L \rangle.$$

Theorem (S-Wickelgren)

Assuming that all four lines L_i are defined over k, we have

$$\sum_{L: L \cap L_i \neq \emptyset \ \forall i} \mathsf{Type}(L) = \langle 1 \rangle + \langle -1 \rangle \in \mathsf{GW}(k)$$

Proof sketch

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$\begin{aligned} X &= \mathsf{Gr}(2,4), \mathcal{V} = \sum_{i=1}^{4} \Lambda^2 \mathcal{S}^{\vee} \\ \sigma \text{ a rational section of } \mathcal{V} \text{ coming from } L_1, L_2, L_3, L_4. \end{aligned}$$

Kass-Wickelgren:
$$e(\mathcal{V}) = \sum_{P:\sigma(P)=0} \deg_P(\sigma) \in \mathrm{GW}(k).$$

Proof Sketch:

 \bullet Show for special choice of explicit section σ of $\mathcal V,$ we have

$$\deg_{L}(\sigma) = \operatorname{Tr}_{k(L)/k} \langle \lambda_{L} - \mu_{L} \rangle.$$

• If L and L' are the two lines that meet all four lines, then

$$(\lambda_L,\mu_L)=(\mu_{L'},\lambda_{L'}).$$

• Use $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle$.

Arithmetic restrictions from enriched counts

Claim: If $k = \mathbb{Q}$, there <u>does not exist</u> a pair L, L' of 2 conjugate lines defined over $\mathbb{Q}(\sqrt{3})$ meeting four lines defined over $\overline{\mathbb{Q}}$ with $\langle \lambda_L - \mu_L \rangle = \langle 5 \rangle$.

$$\text{Main Theorem} \Rightarrow \mathsf{Tr}_{\mathbb{Q}(\sqrt{3})/\mathbb{Q}}\langle 5 \rangle = \langle 1 \rangle + \langle -1 \rangle.$$

<u>Left hand side</u>: In the Q-basis $(1,\sqrt{3})$ for $\mathbb{Q}(\sqrt{3})$, the matrix for the bilinear form $\text{Tr}_{\mathbb{Q}(\sqrt{3})/\mathbb{Q}}\langle 5 \rangle$ is

$$\begin{bmatrix} 2 \cdot 5 & 0 \\ 0 & 2 \cdot 5 \cdot 3 \end{bmatrix}$$

 $\Rightarrow \mathsf{disc}(\mathsf{Tr}_{\mathbb{Q}(\sqrt{3})/\mathbb{Q}}\langle 5 \rangle) = 300.$

Right hand side: disc $(\langle 1 \rangle + \langle -1 \rangle) = -1$.

<u>Contradiction</u>: $300 \neq -1$ in $\mathbb{Q}^*/(\mathbb{Q}^*)^2$.