Conductors and minimal discriminants of hyperelliptic curves

Padmavathi Srinivasan

Georgia Institute of Technology

Joint Mathematics Meetings, Baltimore January 19, 2019

Outline

(1) Introduction
(2) Definitions
(3) Computational tools

4 Proof strategies in examples

What are conductors and minimal discriminants?

> Degenerating family of hyperelliptic curves

How are these related?

How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If $g=1$, then $\operatorname{Art}^{+}(X)=\Delta_{X}$. [Ogg-Saito formula]
- If $g=2$, then Liu showed that $\operatorname{Art}^{+}(X) \leq \Delta_{X}$. He showed that equality does not always hold.

How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If $g=1$, then $\operatorname{Art}^{+}(X)=\Delta_{X}$. [Ogg-Saito formula]
- If $g=2$, then Liu showed that $\operatorname{Art}^{+}(X) \leq \Delta_{X}$. He showed that equality does not always hold.

Question: Does $\operatorname{Art}^{+}(X) \leq \Delta_{X}$ hold for hyperelliptic curves of arbitrary genus g ?
Today:

- Yes, if the residue characteristic is $>2 g+1$. [S.]
- Combinatorial restrictions for equality when $g \geq 2$.
- Yes, if the residue characteristic is $\neq 2$. [Joint work in progress with Obus]

Outline

(1) Introduction

(2) Definitions
(3) Computational tools

4 Proof strategies in examples
R : complete discrete valuation ring
K : fraction field of R
k : residue field of R, algebraically closed, char $\neq 2$
\bar{K} : a fixed separable closure of K
G_{K} : Galois group of \bar{K} / K
ν : valuation $\bar{K} \rightarrow \mathbb{Q} \cup\{\infty\}$
t : a uniformizer of R, i.e., $\nu(t)=1$.
Examples: $\mathbb{C}[[t]], \widehat{\mathbb{Z}_{p}^{\text {unr }}}$
X : smooth hyperelliptic K-curve
g : genus of X

Minimal discriminant

Definition: The minimal discriminant Δ_{X} of X / K is the nonnegative integer

$$
\Delta_{x}:=\min _{\substack{f(x) \in R[x] \\ y^{2}=f(x), \text { eqn. for } x}} \nu \underbrace{(\operatorname{disc}(f))}_{\in R} .
$$

An example: $K=\mathbb{C}((t))$

$$
\begin{aligned}
& C_{1}: y^{2}=x(x-t)(x-2 t)(x-3 t) \quad \rightsquigarrow \quad \nu(\operatorname{disc}(f))=2\binom{4}{2} . \\
& C_{2}: y^{\prime 2}=x^{\prime}\left(x^{\prime}-1\right)\left(x^{\prime}-2\right)\left(x^{\prime}-3\right) \quad \rightsquigarrow \quad \nu(\operatorname{disc}(f))=0 .
\end{aligned}
$$

Here $C_{1} \cong{ }_{K} C_{2}$ via $x^{\prime}=\frac{x}{t}, y^{\prime}=\frac{y}{t^{2}} \rightsquigarrow \Delta_{X}=0$.

Artin conductor

Fix a prime $\ell \neq$ char k. For any curve C over an algebraically closed field of char $\neq \ell$, let

$$
\chi(C):=\sum_{i=0}^{2}(-1)^{i} \operatorname{dim} H_{e t}^{i}\left(C, \mathbb{Q}_{\ell}\right) .
$$

δ : Swan conductor for the G_{K} representation $H^{1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)$ (integer, ≥ 0, measure of wild ramification).
$\mathcal{X}^{\text {min }}$: minimal proper regular R-model of X.
Definition: The Artin conductor $\operatorname{Art}^{+}(X)$ of X / K is

$$
\operatorname{Art}^{+}(X):=\chi\left(\mathcal{X}_{k}^{\min }\right)-\chi\left(\mathcal{X}_{\bar{K}}^{\min }\right)+\delta .
$$

Properties of the Artin Conductor

- $\mathrm{Art}^{+}(X)$ is independent of ℓ.
- $\operatorname{Art}^{+}(X) \geq 0$.
$\operatorname{Art}^{+}(X)=0 \Longleftrightarrow \mathcal{X}^{\text {min }} \rightarrow$ Spec R is smooth or $g=1$ and $\left(\mathcal{X}_{k}\right)_{\text {red }}$ is smooth.
- Let n be the number of components of $\mathcal{X}_{k}^{\text {min }}$ and let ϵ be the tame conductor for the G_{K} representation $H^{1}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}\right)$. Then,

$$
\operatorname{Art}^{+}(X)=(n-1)+\epsilon+\delta
$$

- When $\mathcal{X}^{\text {min }}$ is regular and semi-stable,

$$
\operatorname{Art}^{+}(X)=\# \text { singular points of } \mathcal{X}_{k}^{\min }
$$

Recap of main theorem

Theorem (S.)
Let K be the fraction field of a Henselian discrete valuation ring.
Let X be a smooth hyperelliptic curve over K of genus $g \geq 1$. Assume that the residue characteristic is $>2 g+1$.
Then,

$$
\operatorname{Art}^{+}(X) \leq \Delta_{X}
$$

Outline

(1) Introduction

(2) Definitions
(3) Computational tools

4 Proof strategies in examples

Explicit regular models when char $k \neq 2$

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
\operatorname{Art}^{+}(\mathcal{X}) \leq \Delta_{X}
$$

Explicit regular models when char $k \neq 2$

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
\operatorname{Art}^{+}(X) \leq \operatorname{Art}^{+}(\mathcal{X}) \leq \Delta_{X}
$$

Explicit regular models when char $k \neq 2$

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
\operatorname{Art}^{+}(X) \leq \operatorname{Art}^{+}(\mathcal{X}) \leq \Delta_{X}
$$

Two reasons for non regular Weierstrass models:

- Components of $\operatorname{div} f \subset \mathbb{P}_{R}^{1}$ intersect. (Example: $K=\mathbb{C}((t)), \quad y^{2}=x(x-t)(x-1)$.)
- Components of $\operatorname{div} f \subset \mathbb{P}_{R}^{1}$ are not regular curves.
(Example: $K=\mathbb{C}((t)), \quad y^{2}=x^{3}-t^{2}$.)

Explicit regular models when char $k \neq 2$

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
\operatorname{Art}^{+}(X) \leq \operatorname{Art}^{+}(\mathcal{X}) \leq \Delta_{X}
$$

Two reasons for non regular Weierstrass models:

- Components of $\operatorname{div} f \subset \mathbb{P}_{R}^{1}$ intersect. (Example: $K=\mathbb{C}((t)), \quad y^{2}=x(x-t)(x-1)$.)
- Components of $\operatorname{div} f \subset \mathbb{P}_{R}^{1}$ are not regular curves. (Example: $K=\mathbb{C}((t)), \quad y^{2}=x^{3}-t^{2}$.)

Solution: Blow-up \mathbb{P}_{R}^{1} first before taking a double cover.

Explicit regular models when char $k \neq 2$

Lemma

Let $\mathrm{Bl} \mathbb{P}_{R}^{1}$ be an arithmetic surface birational to \mathbb{P}_{R}^{1}.
Let f be an element of the function field of \mathbb{P}_{R}^{1}.
Assume that the odd multiplicity components of the divisor of f on
$\mathrm{Bl} \mathbb{P}_{R}^{1}$ are disjoint and regular.
Then, the normalization of $\mathrm{Bl} \mathbb{P}_{R}^{1}$ in $K(x, \sqrt{f(x)})$ is a proper regular model for the hyperelliptic curve given by $y^{2}=f(x)$.

Explicit regular models when char $k \neq 2$

Lemma

Let $\mathrm{Bl} \mathbb{P}_{R}^{1}$ be an arithmetic surface birational to \mathbb{P}_{R}^{1}.
Let f be an element of the function field of \mathbb{P}_{R}^{1}.
Assume that the odd multiplicity components of the divisor of f on
$\mathrm{Bl} \mathbb{P}_{R}^{1}$ are disjoint and regular.
Then, the normalization of $\mathrm{Bl} \mathbb{P}_{R}^{1}$ in $K(x, \sqrt{f(x)})$ is a proper regular model for the hyperelliptic curve given by $y^{2}=f(x)$.

Explicit regular model:
Let $y^{2}=f(x)$ be an equation for X with $f(x) \in R[x]$ and
$\Delta_{x}=\Delta_{f}$.
Let $\mathrm{Bl} \mathbb{P}_{R}^{1}$ be the (minimal) blowup of \mathbb{P}_{R}^{1} satisfying the conditions above and \mathcal{X}_{f} the associated proper regular model of X.

Computational tools

- Riemann-Hurwitz formula: If $\mathcal{X} \rightarrow \mathcal{Y}$ is a double cover of arithmetic surfaces, branched over the divisor B, then,

$$
\operatorname{Art}^{+}(\mathcal{X})=\left[2 \chi\left(\mathcal{Y}_{k}\right)-\chi\left(B_{k}\right)\right]-\left[2 \chi\left(\mathcal{Y}_{\bar{K}}\right)-\chi\left(B_{\bar{K}}\right)\right]+\delta .
$$

- Inclusion-exclusion/additivity for χ (good for induction!).

Computational tools

- Riemann-Hurwitz formula: If $\mathcal{X} \rightarrow \mathcal{Y}$ is a double cover of arithmetic surfaces, branched over the divisor B, then,

$$
\operatorname{Art}^{+}(\mathcal{X})=\left[2 \chi\left(\mathcal{Y}_{k}\right)-\chi\left(B_{k}\right)\right]-\left[2 \chi\left(\mathcal{Y}_{\bar{K}}\right)-\chi\left(B_{\bar{K}}\right)\right]+\delta
$$

- Inclusion-exclusion/additivity for χ (good for induction!).

Additional tools:
char $k>2 g+1 \rightsquigarrow \delta=0$
char $k \neq 2$

- Explicit formula for δ
- Maclane valuations and approximate roots

Key inductive inequality:

$$
\Delta_{f}-\Delta_{f \text { new }}=n(n-1) \geq 2=\operatorname{Art}^{+}\left(\mathcal{X}_{f}\right)-\operatorname{Art}^{+}\left(\mathcal{X}_{f \text { new }}\right) \quad(\because n \geq 2)
$$

Outline

(1) Introduction

(2) Definitions
(3) Computational tools

4 Proof strategies in examples

Roots of $f \rightsquigarrow$ Metric tree of f

Inductive process on metric trees using Abhyankar's inversion formula

(In the example below, $a=2, b=3$.)
b identical subtrees $\rightsquigarrow a$ identical subtrees. distance a / b from $\eta \rightsquigarrow$ distance $(b / a)-1$ from η. New subtree metric $=($ Old subtree metric $) \cdot b / a$.

Proof in an easy example, $K=\mathbb{C}((t))$

$$
\begin{gathered}
f(x)=x(x-1-t)(x-1-2 t)(x-1-3 t)(x-1-4 t) \\
f^{\mathrm{new}}(x)=(x-1)(x-2)(x-3)(x-4)
\end{gathered}
$$

$\operatorname{Art}^{+}\left(\mathcal{X}_{f}\right)-\operatorname{Art}^{+}\left(\mathcal{X}_{\text {fnew }}\right)=2$.
$\Delta_{f}-\Delta_{f \text { new }}=2\binom{4}{2}=12$.
$\operatorname{Art}^{+}\left(\mathcal{X}_{f \text { new }}\right)=\Delta_{\text {fnew }}=0$.

Examples where $\delta \neq 0$

Let $K=\widehat{\mathbb{Q}_{p}^{\text {un }}}, p$ odd.
$y^{2}=x^{p}-p$
$y^{2}=x^{p}-p^{2}$

Examples where $\delta \neq 0$

Let $K=\widehat{\mathbb{Q}_{p}^{\text {un }}}, p$ odd.
$y^{2}=x^{p}-p$

- Weierstrass model is regular!
- $\operatorname{Art}^{+}(X)=\left[2 \chi\left(\mathcal{Y}_{k}\right)-2 \chi\left(\mathcal{Y}_{\bar{K}}\right)\right]-\left[\chi\left(B_{k}\right)-\chi\left(B_{\bar{K}}\right)\right]+\delta=p-1+\delta$
- $\delta=\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1=\Delta_{f}-p+1$.
$y^{2}=x^{p}-p^{2}$

Examples where $\delta \neq 0$

Let $K=\widehat{\mathbb{Q}_{p}^{\text {unr }}}, p$ odd.
$y^{2}=x^{p}-p$

- Weierstrass model is regular!
- $\operatorname{Art}^{+}(X)=\left[2 \chi\left(\mathcal{Y}_{k}\right)-2 \chi\left(\mathcal{Y}_{\bar{K}}\right)\right]-\left[\chi\left(B_{k}\right)-\chi\left(B_{\bar{K}}\right)\right]+\delta=p-1+\delta$
- $\delta=\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1=\Delta_{f}-p+1$.

$$
y^{2}=x^{p}-p^{2}
$$

- $\delta=\Delta_{K\left(p^{2 / p}\right) / K}-\left[K\left(p^{2 / p}\right): K\right]+1$

$$
\begin{aligned}
& =\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1 \\
& =\Delta_{f}-2\left(\nu_{p}\left(p^{2 / p}\right)-\nu_{p}\left(p^{1 / p}\right)\right)\binom{p}{2}-p+1 \\
& =\Delta_{f}-2(p-1) .
\end{aligned}
$$

Examples where $\delta \neq 0$

Let $K=\widehat{\mathbb{Q}_{p}^{\text {unr }}}, p$ odd.

$$
y^{2}=x^{p}-p
$$

- Weierstrass model is regular!
- $\operatorname{Art}^{+}(X)=\left[2 \chi\left(\mathcal{Y}_{k}\right)-2 \chi\left(\mathcal{Y}_{\bar{K}}\right)\right]-\left[\chi\left(B_{k}\right)-\chi\left(B_{K}\right)\right]+\delta=p-1+\delta$
- $\delta=\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1=\Delta_{f}-p+1$.

$$
y^{2}=x^{p}-p^{2}
$$

- Weierstrass model is not regular! Need $(p-1) / 2$ blowups of \mathbb{P}_{R}^{1}.
- $\delta=\Delta_{K\left(p^{2 / p}\right) / K}-\left[K\left(p^{2 / p}\right): K\right]+1$

$$
\begin{aligned}
& =\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1 \\
& =\Delta_{f}-2\left(\nu_{p}\left(p^{2 / p}\right)-\nu_{p}\left(p^{1 / p}\right)\right)\binom{p}{2}-p+1 \\
& =\Delta_{f}-2(p-1) .
\end{aligned}
$$

Examples where $\delta \neq 0$

Let $K=\widehat{\mathbb{Q}_{p}^{\text {unr }}}, p$ odd.

$$
y^{2}=x^{p}-p
$$

- Weierstrass model is regular!
- $\operatorname{Art}^{+}(X)=\left[2 \chi\left(\mathcal{Y}_{k}\right)-2 \chi\left(\mathcal{Y}_{\bar{K}}\right)\right]-\left[\chi\left(B_{k}\right)-\chi\left(B_{K}\right)\right]+\delta=p-1+\delta$
- $\delta=\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1=\Delta_{f}-p+1$.

$$
y^{2}=x^{p}-p^{2}
$$

- Weierstrass model is not regular! Need $(p-1) / 2$ blowups of \mathbb{P}_{R}^{1}.
- $\operatorname{Art}^{+}(X)=2(p-1)+\delta$
- $\delta=\Delta_{K\left(p^{2 / p}\right) / K}-\left[K\left(p^{2 / p}\right): K\right]+1$

$$
\begin{aligned}
& =\Delta_{K\left(p^{1 / p}\right) / K}-\left[K\left(p^{1 / p}\right): K\right]+1 \\
& =\Delta_{f}-2\left(\nu_{p}\left(p^{2 / p}\right)-\nu_{p}\left(p^{1 / p}\right)\right)\binom{p}{2}-p+1 \\
& =\Delta_{f}-2(p-1) .
\end{aligned}
$$

Finally ...

Thank you!

MATHEMATICS RESEARCH COMMUNITIES

MRC Week 3, June 16-22, 2019

Explicit Methods in Arithmetic Geometry in Characteristic p

Organizers:
Renee Bell, University of Pennsylvania
Julia Hartmann, University of Pennsylvania
Valentijn Karemaker, University of Pennsylvania
Padmavathi Srinivasan, Georgia Institute of Technology
Isabel Vogt, Massachusetts Institute of Technology

Application deadline: February 15

