Conductors and minimal discriminants of hyperelliptic curves

Padmavathi Srinivasan

Georgia Institute of Technology

Joint Mathematics Meetings, Baltimore January 19, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

- 3 Computational tools
- 4 Proof strategies in examples

What are conductors and minimal discriminants?

How are these related?

How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If g = 1, then $\operatorname{Art}^+(X) = \Delta_X$. [Ogg-Saito formula]
- If g = 2, then Liu showed that $\operatorname{Art}^+(X) \leq \Delta_X$. He showed that equality does not always hold.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If g = 1, then Art⁺(X) = Δ_X . [Ogg-Saito formula]
- If g = 2, then Liu showed that Art⁺(X) ≤ Δ_X. He showed that equality does not always hold.

Question: Does $\operatorname{Art}^+(X) \leq \Delta_X$ hold for hyperelliptic curves of arbitrary genus g? Today:

- Yes, if the residue characteristic is > 2g + 1. [S.]
 - Combinatorial restrictions for equality when $g \ge 2$.
- Yes, if the residue characteristic is $\neq 2$. [Joint work in progress with Obus]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Notation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- R: complete discrete valuation ring
- K: fraction field of R
- k: residue field of R, algebraically closed, char $\neq 2$
- \overline{K} : a fixed separable closure of K
- G_K : Galois group of \overline{K}/K
 - ν : valuation $\overline{K} \to \mathbb{Q} \cup \{\infty\}$
 - t: a uniformizer of $R, i.e., \nu(t) = 1$.
- Examples: $\mathbb{C}[[t]], \widehat{\mathbb{Z}_p^{\mathrm{unr}}}$
 - X: smooth hyperelliptic K-curve
 - g: genus of X

Minimal discriminant

Definition: The minimal discriminant Δ_X of X/K is the nonnegative integer

$$\Delta_{X} := \min_{\substack{f(x) \in R[x] \\ y^2 = f(x), \text{ eqn. for } X}} \nu(\underbrace{\mathsf{disc}(f))}_{\in R}.$$

An example: $K = \mathbb{C}((t))$

$$C_1: y^2 = x(x-t)(x-2t)(x-3t) \quad \rightsquigarrow \quad \nu(\operatorname{disc}(f)) = 2\binom{4}{2}.$$

$$C_2: y'^2 = x'(x'-1)(x'-2)(x'-3) \quad \rightsquigarrow \quad \nu(\operatorname{disc}(f)) = 0.$$

Here $C_1 \cong_{\mathcal{K}} C_2$ via $x' = \frac{x}{t}, y' = \frac{y}{t^2} \rightsquigarrow \Delta_{\mathcal{X}} = 0.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

1.00

Artin conductor

Fix a prime $\ell \neq \text{char } k$. For any curve *C* over an algebraically closed field of char $\neq \ell$, let

$$\chi(\mathcal{C}) := \sum_{i=0}^{2} (-1)^{i} \dim H^{i}_{\acute{e}t}(\mathcal{C}, \mathbb{Q}_{\ell}).$$

 δ : Swan conductor for the G_K representation $H^1(X_{\overline{K}}, \mathbb{Q}_\ell)$ (integer, ≥ 0 , measure of wild ramification). \mathcal{X}^{\min} : minimal proper regular *R*-model of *X*.

Definition: The Artin conductor $Art^+(X)$ of X/K is

$$\operatorname{Art}^+(X) := \chi(\mathcal{X}_k^{\min}) - \chi(\mathcal{X}_{\overline{K}}^{\min}) + \delta$$

Properties of the Artin Conductor

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Art⁺(X) is independent of ℓ .
- $\operatorname{Art}^+(X) \ge 0$. $\operatorname{Art}^+(X) = 0 \iff \mathcal{X}^{\min} \to \operatorname{Spec} R$ is smooth or g = 1 and $(\mathcal{X}_k)_{\operatorname{red}}$ is smooth.
- Let *n* be the number of components of \mathcal{X}_{k}^{\min} and let ϵ be the tame conductor for the $G_{\mathcal{K}}$ representation $H^{1}(X_{\overline{\mathcal{K}}}, \mathbb{Q}_{\ell})$. Then,

$$\operatorname{Art}^+(X) = (n-1) + \epsilon + \delta.$$

• When \mathcal{X}^{\min} is regular and semi-stable,

 $\operatorname{Art}^+(X) = \#$ singular points of \mathcal{X}_k^{\min} .

Recap of main theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (S.)

Let K be the fraction field of a Henselian discrete valuation ring. Let X be a smooth hyperelliptic curve over K of genus $g \ge 1$. Assume that the residue characteristic is > 2g + 1. Then,

 $\operatorname{Art}^+(X) \leq \Delta_X.$

Outline

Remark: Suffices to find ONE proper regular model $\mathcal X$ such that

 $\operatorname{Art}^+(\mathcal{X}) \leq \Delta_X.$

Remark: Suffices to find ONE proper regular model $\mathcal X$ such that

 $\operatorname{Art}^+(X) \leq \operatorname{Art}^+(\mathcal{X}) \leq \Delta_X.$

A D N A 目 N A E N A E N A B N A C N

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

 $\operatorname{Art}^+(X) \leq \operatorname{Art}^+(\mathcal{X}) \leq \Delta_X.$

Two reasons for non regular Weierstrass models:

- Components of div $f \subset \mathbb{P}^1_R$ intersect. (Example: $K = \mathbb{C}((t)), \quad y^2 = x(x-t)(x-1).$)
- Components of div $f \subset \mathbb{P}^1_R$ are not regular curves. (Example: $K = \mathbb{C}((t)), \quad y^2 = x^3 - t^2$.)

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

 $\operatorname{Art}^+(X) \leq \operatorname{Art}^+(\mathcal{X}) \leq \Delta_X.$

Two reasons for non regular Weierstrass models:

- Components of div $f \subset \mathbb{P}^1_R$ intersect. (Example: $K = \mathbb{C}((t)), \quad y^2 = x(x-t)(x-1).$)
- Components of div $f \subset \mathbb{P}^1_R$ are not regular curves. (Example: $K = \mathbb{C}((t)), \quad y^2 = x^3 - t^2$.)

Solution: Blow-up \mathbb{P}^1_R first *before* taking a double cover.

Lemma

Let Bl \mathbb{P}_{R}^{1} be an arithmetic surface birational to \mathbb{P}_{R}^{1} . Let f be an element of the function field of \mathbb{P}_{R}^{1} . Assume that the odd multiplicity components of the divisor of f on Bl \mathbb{P}_{R}^{1} are disjoint and regular. Then, the normalization of Bl \mathbb{P}_{R}^{1} in $K(x, \sqrt{f(x)})$ is a proper

regular model for the hyperelliptic curve given by $y^2 = f(x)$.

Lemma

Let $\operatorname{Bl} \mathbb{P}^1_R$ be an arithmetic surface birational to \mathbb{P}^1_R .

Let f be an element of the function field of \mathbb{P}^1_R .

Assume that the odd multiplicity components of the divisor of f on Bl \mathbb{P}^1_R are disjoint and regular.

Then, the normalization of Bl \mathbb{P}^1_R in $K(x, \sqrt{f(x)})$ is a proper regular model for the hyperelliptic curve given by $y^2 = f(x)$.

Explicit regular model: Let $y^2 = f(x)$ be an equation for X with $f(x) \in R[x]$ and $\Delta_X = \Delta_f$. Let Bl \mathbb{P}^1_R be the (minimal) blowup of \mathbb{P}^1_R satisfying the conditions above and \mathcal{X}_f the associated proper regular model of X.

Computational tools

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 Riemann-Hurwitz formula: If X → Y is a double cover of arithmetic surfaces, branched over the divisor B, then,

$$\operatorname{Art}^{+}(\mathcal{X}) = [2\chi(\mathcal{Y}_{k}) - \chi(B_{k})] - [2\chi(\mathcal{Y}_{\overline{K}}) - \chi(B_{\overline{K}})] + \delta.$$

• Inclusion-exclusion/additivity for χ (good for induction!).

Computational tools

 Riemann-Hurwitz formula: If X → Y is a double cover of arithmetic surfaces, branched over the divisor B, then,

$$\operatorname{Art}^{+}(\mathcal{X}) = [2\chi(\mathcal{Y}_{k}) - \chi(B_{k})] - [2\chi(\mathcal{Y}_{\overline{K}}) - \chi(B_{\overline{K}})] + \delta.$$

• Inclusion-exclusion/additivity for χ (good for induction!).

Additional tools:

char $k > 2g + 1 \rightsquigarrow \delta = 0$

- Roots of $f \rightsquigarrow$ Metric tree of f
- Induction on the metric tree
- Abhyankar's Inversion formula

Key inductive inequality:

char $k \neq 2$

- Explicit formula for δ
- Maclane valuations and approximate roots

 $\Delta_f - \Delta_{f^{\mathrm{new}}} = n(n-1) \ge 2 = \operatorname{Art}^+(\mathcal{X}_f) - \operatorname{Art}^+(\mathcal{X}_{f^{\mathrm{new}}}) \quad (\because n \ge 2).$

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof strategies in examples

Roots of $f \rightsquigarrow$ Metric tree of f

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inductive process on metric trees using Abhyankar's inversion formula

(In the example below, a = 2, b = 3.) **b** identical subtrees $\rightarrow a$ identical subtrees. distance a/b from $\eta \rightsquigarrow$ distance (b/a) - 1 from η . New subtree metric = (Old subtree metric) $\cdot b/a$. $1/2 = (1/4) \cdot (2/1)$ 1/6 $1/4 = (1/6) \cdot (3/2)$ 1 = (2/1) - 12/31/2 = (3/2) - 1

Proof in an easy example, $K = \mathbb{C}((t))$

(ロ)、(型)、(E)、(E)、 E) の(()

$$f(x) = x(x - 1 - t)(x - 1 - 2t)(x - 1 - 3t)(x - 1 - 4t)$$

$$\downarrow$$

$$f^{new}(x) = (x - 1)(x - 2)(x - 3)(x - 4)$$

$$\operatorname{\mathsf{Art}}^+(\mathcal{X}_f) - \operatorname{\mathsf{Art}}^+(\mathcal{X}_{f^{\operatorname{new}}}) = 2.$$

$$\Delta_f - \Delta_{f^{\text{new}}} = 2\binom{4}{2} = 12.$$

$$\operatorname{Art}^+(\mathcal{X}_{f^{\operatorname{new}}}) = \Delta_{f^{\operatorname{new}}} = 0.$$

Let
$$K = \widehat{\mathbb{Q}_p^{\text{unr}}}$$
, p odd.
 $y^2 = x^p - p$

$$y^2 = x^p - p^2$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let
$$K = \widehat{\mathbb{Q}_p^{unr}}$$
, p odd.

$$\frac{y^2 = x^p - p}{\bullet \text{ Weierstrass model is regular!}}$$

$$\bullet \text{ Art}^+(X) = [2\chi(\mathcal{Y}_k) - 2\chi(\mathcal{Y}_{\overline{K}})] - [\chi(B_k) - \chi(B_{\overline{K}})] + \delta = p - 1 + \delta$$

$$\bullet \delta = \Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1 = \Delta_f - p + 1.$$

$$y^2 = x^p - p^2$$

Let
$$\mathcal{K} = \widehat{\mathbb{Q}_p^{\text{unr}}}$$
, p odd.

$$\frac{y^2 = x^p - p}{\bullet \text{ Weierstrass model is regular!}}$$

$$\bullet \operatorname{Art}^+(X) = [2\chi(\mathcal{Y}_k) - 2\chi(\mathcal{Y}_{\overline{K}})] - [\chi(B_k) - \chi(B_{\overline{K}})] + \delta = p - 1 + \delta$$

$$\bullet \delta = \Delta_{\mathcal{K}(p^{1/p})/\mathcal{K}} - [\mathcal{K}(p^{1/p}) : \mathcal{K}] + 1 = \Delta_f - p + 1.$$

$$y^2 = x^p - p^2$$

•
$$\delta = \Delta_{K(p^{2/p})/K} - [K(p^{2/p}) : K] + 1$$

 $= \Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1$
 $= \Delta_f - 2(\nu_p(p^{2/p}) - \nu_p(p^{1/p})){p \choose 2} - p + 1$
 $= \Delta_f - 2(p - 1).$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Let
$$\mathcal{K} = \widehat{\mathbb{Q}_p^{unr}}$$
, p odd.
 $y^2 = x^p - p$
• Weierstrass model is regular!
• Art⁺(X) = $[2\chi(\mathcal{Y}_k) - 2\chi(\mathcal{Y}_{\overline{K}})] - [\chi(B_k) - \chi(B_{\overline{K}})] + \delta = p - 1 + \delta$
• $\delta = \Delta_{\mathcal{K}(p^{1/p})/\mathcal{K}} - [\mathcal{K}(p^{1/p}) : \mathcal{K}] + 1 = \Delta_f - p + 1.$

$$y^2 = x^p - p^2$$

• Weierstrass model is not regular! Need (p-1)/2 blowups of \mathbb{P}^1_R .

•
$$\delta = \Delta_{K(p^{2/p})/K} - [K(p^{2/p}) : K] + 1$$

= $\Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1$
= $\Delta_f - 2(\nu_p(p^{2/p}) - \nu_p(p^{1/p})){p \choose 2} - p + 1$
= $\Delta_f - 2(p - 1).$

Let
$$\mathcal{K} = \widehat{\mathbb{Q}_p^{unr}}$$
, p odd.
 $y^2 = x^p - p$
• Weierstrass model is regular!
• Art⁺(X) = $[2\chi(\mathcal{Y}_k) - 2\chi(\mathcal{Y}_{\overline{K}})] - [\chi(B_k) - \chi(B_{\overline{K}})] + \delta = p - 1 + \delta$
• $\delta = \Delta_{\mathcal{K}(p^{1/p})/\mathcal{K}} - [\mathcal{K}(p^{1/p}) : \mathcal{K}] + 1 = \Delta_f - p + 1.$

$$y^2 = x^p - p^2$$

• Weierstrass model is not regular! Need (p-1)/2 blowups of \mathbb{P}_{R}^{1} . • Art⁺(X) = 2(p-1) + δ • $\delta = \Delta_{K(p^{2/p})/K} - [K(p^{2/p}) : K] + 1$ = $\Delta_{K(p^{1/p})/K} - [K(p^{1/p}) : K] + 1$ = $\Delta_{f} - 2(\nu_{p}(p^{2/p}) - \nu_{p}(p^{1/p}))\binom{p}{2} - p + 1$ = $\Delta_{f} - 2(p-1)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you!

MRC Week 3, June 16-22, 2019

Explicit Methods in Arithmetic Geometry in Characteristic p

Organizers:

Renee Bell, University of Pennsylvania Julia Hartmann, University of Pennsylvania Valentijn Karemaker, University of Pennsylvania Padmavathi Srinivasan, Georgia Institute of Technology Isabel Vogt, Massachusetts Institute of Technology

Application deadline: February 15

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで