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Abstract. We formulate a tropical analogue of Grothendieck’s section conjecture: that for every stable
graph Γ of genus g > 2, and every field k, the generic curve with reduction type Γ over k satisfies the section

conjecture. We prove many cases of this conjecture. In so doing we produce many examples of curves
satisfying the section conjecture over fields of geometric interest, and then over p-adic fields and number

fields via a Chebotarev argument.

We construct two Galois cohomology classes o1 and õ2, which obstruct the existence of π1-sections and
hence of rational points. The first is an abelian obstruction, closely related to the period of a curve and

to a cohomology class on the moduli space of curves Mg studied by Morita. The second is a 2-nilpotent

obstruction and appears to be new. We study the degeneration of these classes via topological techniques,
and we produce examples of surface bundles over surfaces where these classes obstruct sections. We then

use these constructions to produce curves over p-adic fields and number fields where each class obstructs

π1-sections and hence rational points.
Among our geometric results are a new proof of the section conjecture for the generic curve of genus

g ≥ 3, and a proof of the section conjecture for the generic curve of even genus with a rational divisor class

of degree one (where the obstruction to the existence of a section is genuinely non-abelian).

1. Introduction

The goal of this paper is to give a systematic way to construct examples of curves for which Grothendieck’s
section conjecture holds. We begin by formulating a geometric analogue of the section conjecture “at the
boundary of Mg,” which we refer to as the tropical section conjecture. We prove many cases of this conjecture,
giving geometric examples where the section conjecture holds, by an analysis of the degeneration of certain
cohomology classes on the moduli space of curves, Mg, and on the moduli space of degree one divisor

classes on the universal curve, Pic1
Cg/Mg

. We then use a Chebotarev density argument to produce examples
of curves over p-adic fields for which the section conjecture holds, and then finally examples over number
fields by approximation. Our methods are inspired by “arithmetic topology,” and indeed, a key step in our
construction is to pass from the existence of certain (topological) surface bundles over surfaces to curves over
p-adic fields with analogous properties. In our view the main interest in this paper arises from its fusion of
topological, geometric, and arithmetic techniques.

The main technical innovation of the paper is the study of the Gysin images of two cohomology classes
o1, õ2 which obstruct π1-sections and hence rational points, as well as the construction of õ2 itself (which
appears to be new, though it is inspired by work of Jordan Ellenberg [Ell00] and Wickelgren [Wic09]).

1.1. The section conjecture. Let k be a field and let X be a smooth projective k-curve (that is, a smooth,
projective, separated, geometrically connected k-scheme of dimension 1). Let k be a separable closure of k
and let x̄ ∈ X(k) be a geometric point of X. Then there is a short exact sequence

(1.1.1) 1→ πét
1 (Xk, x̄)→ πét

1 (X, x̄)→ Gal(k/k)→ 1,

where πét
1 denotes the étale fundamental group. To each rational point x ∈ X(k) one may associate a

canonical conjugacy class of splittings [sx] of this exact sequence. We call splittings of sequence (1.1.1)
π1-sections. The starting point for this work is Grothendieck’s section conjecture, which suggests that in
many cases the sequence above encodes all of the arithmetic of X:

Conjecture 1.1.2 (The section conjecture [Gro97]). Suppose k is a finitely-generated field of characteristic
0 and that the genus of X is at least 2. Then the map

X(k)→ {splittings of sequence (1.1.1)}/conjugacy
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x 7→ [sx]

is a bijection.

Though Grothendieck originally made his conjecture only over finitely-generated fields of characteristic 0,
it is widely believed to hold true in more generality — for example, over p-adic fields.

Following Stix [Sti10], we say that a smooth projective curve X/k trivially satisfies the section conjecture
if sequence (1.1.1) has no sections. As any map with target the empty set is a bijection, such a curve evidently
does in fact satisfy the section conjecture. (Of course it is in general by no means trivial to show that a
curve does indeed trivially satisfy the section conjecture.) While there is now a fair amount of evidence for
the section conjecture (see e.g. [Sti12]), all known examples of curves X/k satisfying the section conjecture
do so trivially, at least to the authors’ knowledge. Though this state of affairs is disappointing, it is perhaps
worth noting that proving the section conjecture in the case of k-curves X with X(k) = ∅ would in fact
imply the section conjecture for all X/k [Sti10, Appendix C].

1.2. The tropical section conjecture. Let g ≥ 2 be an integer. Recall that the moduli space Mg of

smooth projective curves of genus g has a Deligne-Mumford compactification Mg, parametrizing stable

curves of genus g. The boundary strata of Mg are indexed by stable graphs (see Section 2.1 for more
details). For a stable graph Γ, we denote the corresponding boundary stratum by ZΓ.

Now suppose g > 2, and let k be a field. For each boundary stratum ZΓ of Mg, let K̂Γ be the fraction

field of the complete local ring O
K̂Γ

:= ̂OMg,k,ZΓ
of Mg,k at the generic point of ZΓ, and let C

K̂Γ
be the fiber

of the universal curve Cg over K̂Γ.

Conjecture 1.2.1 (Tropical section conjecture). For every field k and stable graph Γ, the curve C
K̂Γ

trivially

satisfies the section conjecture.

That is, we conjecture that the sequence (1.1.1) has no sections when we set X = C
K̂Γ

. We think of C
K̂Γ

as “the generic curve with reduction type Γ.” In our view this conjecture is interesting because it aims to
capture the local, geometric reasons for the truth of the section conjecture. Indeed, the methods we use to
prove special cases of this conjecture can also be used to produce arithmetic examples of curves over local
fields satisfying the section conjecture for geometric reasons, as we explain later on in this introduction.

Remark 1.2.2. One can verify that the curves C
K̂Γ

have no rational points, at least in characteristic 0,

consistent with Conjecture 1.2.1. Indeed, it follows from the main result of Hubbard’s thesis [Hub72] that if

Γ is the trivial graph, consisting only of a single vertex of genus g, then C
K̂Γ

has no K̂Γ-rational points; this

is the case of the generic curve. For non-trivial Γ, the analysis of rational points of the generic n-pointed
curve by Earle and Kra [EK76] implies that the only rational points on the special fiber of the canonical
curve over O

K̂Γ
are nodes. Now an analysis of the deformation theory of these nodes shows that none of

them lift to K̂Γ-rational points of C
K̂Γ

.

Remark 1.2.3. The assumption g > 2 is necessary so that K̂Γ is a field, rather than a gerbe over the
spectrum of a field. This condition can be relaxed to g ≥ 2 if one allows such objects into the formulation
of the section conjecture, but we felt doing so would introduce unnecessary clutter.

One of the main purposes of this paper is to prove several special cases of this conjecture, and indeed to
identify precise obstructions to the splitting of (1.1.1) in these cases. All of the cases of this conjecture that
we verify are of a combinatorial nature, as we now explain.

Let Γ̃ be a connected tropical curve, i.e. a connected metric graph such that the underlying graph Γ is
stable in the sense of Section 2.1. One may associate (non-functorially) a compact orientable surface ΣΓ to
Γ, with marked loops γe on ΣΓ for each edge e of Γ by “inflating Γ” (see Figure 1.2.4 for an illustration,
and Section 2.1 for a precise description). We denote the Dehn twist around γe by Te. Now assume that

the edge lengths `(e) of the metric graph Γ̃ are positive integers. Let TΓ be the Dehn multitwist along the
marked curves in ΣΓ, that is,

TΓ =
∏
e∈E

T `(e)e .
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Figure 1.2.4. The surface ΣΓ associated to a stable graph Γ

Let G be a group of orientation-preserving mapping classes acting on ΣΓ and permuting the loops γe up to
isotopy, such that if g(γe) = γe′ for some g ∈ G, then `(e) = `(e′). Then G commutes with TΓ up to isotopy
and so we obtain an action (up to isotopy) of 〈TΓ〉 ×G on ΣΓ, where 〈TΓ〉 is the subgroup of the mapping
class group generated by TΓ. Hence we have a fibration

W = ΣΓ ×(〈TΓ〉×G) E(〈TΓ〉 ×G)→ B(〈TΓ〉 ×G)

with fiber ΣΓ, where here E(〈TΓ〉 ×G) is a contractible space with free 〈TΓ〉 ×G-action and

B(〈TΓ〉 ×G) = E(〈TΓ〉 ×G)/(〈TΓ〉 ×G)

denotes the classifying space. The long exact sequence in homotopy groups gives:

(1.2.5) 1→ π1(ΣΓ)→ π1(W )→ 〈TΓ〉 ×G→ 1.

Question 1.2.6. For which Γ, G does sequence (1.2.5) split?

One observation of this paper is that in some cases, answering this purely topological question for certain
G,Γ, allows us to (non-trivially) deduce Conjecture 1.2.1 for Γ and certain k.

1.3. Main results.

1.3.1. Geometric results. Let Γ,Γ′ be stable graphs. We say that Γ specializes to Γ′ if Γ can be obtained
from Γ′ by contracting edges (or equivalently, if ZΓ′ is in the closure of ZΓ). So, for example the graph
consisting only of a single vertex of genus g specializes to every stable graph of genus g.

Our first result is a verification of Conjecture 1.2.1 in many cases. A simple-to-state special case of this
result is:

Theorem 1.3.1. Let k be a field of characteristic 0.

(1) Let g > 2 be an integer. Let Cg−1 be the stable graph consisting of a (g−1)-cycle all of whose vertices
have genus 1. Then, if Γ is any graph which specializes to Cg−1, the section conjecture is trivially
true for C

K̂Γ
.

(2) Let g > 2 be an even integer, and let Tg be any stable tree of genus g admitting an involution that
fixes no vertices and stabilizes a unique edge. Then, if Γ is any graph which specializes to Tg, the
section conjecture is trivially true for C

K̂Γ
.

See Figures 5.1.13, 5.1.16 for other examples of graphs for which our method succeeds, including some
graphs corresponding to boundary components of Mg of maximal codimension. See Corollary 6.1.2 for a
strenghtening of (1) and Corollary 6.1.7 for a strengthening of (2).

In fact we prove a substantially stronger result—in case (1) of Theorem 1.3.1, we show that there is an
obstruction to splitting sequence (1.1.1) arising from the abelianization of the geometric étale fundamental
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group, and in case (2) we show that, while there is no such abelian obstruction, there is an obstruction
arising from the second nilpotent quotient of the geometric étale fundamental group.

As a consequence of our argument in case (2), we find:

Theorem 1.3.2. Let k be a field of characteristic 0. Let g > 2 be even, and let Q := k(Pic1
Cg/Mg

) be
the function field of the moduli space of degree 1 divisors on the universal curve over k. Then the section
conjecture is trivially true for the base change of the universal curve Cg to Q.

See Corollary 6.1.9 for a more precise statement—we show that while there is no abelian obstruction to
sections, there is in fact a 2-nilpotent obstruction. That is, we show the sequence

1→ πét
1 (Cg,Q)/L3πét

1 (Cg,Q)→ πét
1 (Cg,Q)/L3πét

1 (Cg,Q)→ Gal(Q/Q)→ 1

does not split, where Liπét
1 (Cg,Q) denotes the lower central series of πét

1 (Cg,Q). As far as we know even the
following simple corollary is new:

Corollary 1.3.3. Let k be a field of characteristic 0 and let g > 2 be even. The base change of the universal
curve to k(Pic1

Cg/Mg
) has no rational points.

The following consequence of our methods partially strengthens a result of Hain [Hai11]:

Corollary 1.3.4. Let g > 2 be an integer and k a field of characteristic 0. The base change of the universal
curve Cg of genus g to the function field k(Mg) of Mg,k trivially satisfies the section conjecture. Indeed, the
exact sequence

1→ πét
1 (C

g,k(Mg)
)ab → πét

1 (Cg,k(Mg))/[π
ét
1 (C

g,k(Mg)
), πét

1 (C
g,k(Mg)

)]→ Gal(k(Mg)/k(Mg))→ 1

does not split.

See Corollary 6.1.3 for a stronger statement. Hain proves that the generic curve of genus g over a field of
characteristic zero satisfies the section conjecture if g ≥ 5. Our proof strengthens his statement in some ways
by showing that the obstruction to splitting is in some sense abelian. Hain proves similar non-splitting results
for the level covers of Mg, about which we say nothing. While we state the results here in characteristic 0 for
simplicity, they in fact hold in any sufficiently large (in terms of g) finite characteristic as well, as explained
in Corollary 6.1.3.

In both cases of Theorem 1.3.1, we proceed by first answering its topological variant, Question 1.2.6, for
(Γ, G) = (Cg−1,Z/(g − 1)Z) and (Γ, G) = (Tg,Z/2Z) in parts (1) and (2) respectively.

1.3.2. Topological results and the cohomology of Mg. All of these results follow from an analysis of certain

torsion cohomology classes on Mg and Pic1
Cg/Mg

over a field k of characteristic 0. We describe the situation
over C now. We study a class

o1 ∈ H2(Mg,V1)

(which we call the Morita class, as it was previously studied by Morita [Mor86]) and a class

õ2 ∈M(Pic1
Cg/Mg

,V2),

where the Vi are certain local systems on Mg and Pic1
Cg/Mg

, respectively, and M(Pic1
Cg/Mg

,V2) is a certain

functorial quotient of H2(Pic1
Cg/Mg

,V2). These classes obstruct splittings of sequence (1.1.1), in a sense
which we now explain.

Let π : E → B be a surface bundle with fiber the orientable surface Σg of genus g, and let f : B →Mg

the associated map. Let Liπ1(Σg) be the lower central series filtration on π1(Σg). Then

f∗o1 ∈ H2(B, f∗V1)

is nonzero if and only if the exact sequence

0→ π1(Σg)/L
2π1(Σg)→ π1(E)/L2π1(Σg)→ π1(B)→ 1

does not split. If the sequence does split, f admits a lift f̃ : B → Pic1
Cg/Mg

. And if f̃∗õ2 does not vanish,
then the sequence

1→ π1(Σg)/L
3π1(Σg)→ π1(E)/L3π1(Σg)→ π1(B)→ 1
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does not split (though the converse need not hold).
Morita shows [Mor86, Corollary 3, Proposition 4] that o1 is non-zero for g ≥ 9. We are able to extend

his non-vanishing result to all g ≥ 3 by constructing certain surface bundles over the two-torus T 2, as
we now explain. We construct maps fg : T 2 → Mg such that the pullbacks f∗g o1 are non-trivial. Hence
in particular the associated surface bundles have no section. Similarly, for all g ≥ 2, we construct maps
hg : T 2 → Pic1

Cg/Mg
such that h∗g õ2 has order exactly 2. Hence again the associated surface bundles have no

section. These constructions answer a question of Hillman [Hil15, end of Section 10], who asked if there are
surface bundles over tori with (1) hyperbolic fiber and (2) no continuous section, for all g ≥ 2. See Corollary
5.1.15 and Theorem 5.2.10 for these topological constructions.

The construction of these bundles in fact gives substantially finer information about the behavior of
the classes o1, õ2, near the boundary of the Deligne-Mumford compactification of Mg and the Caporaso

compactification of Pic1
Cg/Mg

[Cap94]. Let Γ1 = Cg−1,Γ2 = Tg be the stable graphs described in Section

1.3.1, and let EΓi be the exceptional divisor of the blowup of Mg at the stratum corresponding to Γi. We
show the following (see Corollaries 5.3.2 and 5.3.5 for the precise statements):

Theorem 1.3.5. The Gysin image of o1 is non-zero in the cohomology of a Zariski-open subset E◦Γ1
of EΓ1 ,

and the Gysin image of õ2 is non-zero in (an appropriate quotient of) the cohomology of a Zariski-open
subset of the preimage of EΓ2

in a blowup of the Caporaso compactification of Pic1
Cg/Mg

.

The non-vanishing of these Gysin images is crucial for our arithmetic applications, and for the proof of
Theorem 1.3.1. In particular it more or less immediately shows that these classes do not vanish at the generic
points of the respective moduli spaces on which they live.

1.3.3. Arithmetic results. Our main arithmetic results are arithmetic analogues of those described in Section

1.3.2. We define classes o1,ét, õ2,ét in the étale cohomology of Mg, Pic1
Cg/Mg

, with coefficients in certain Ẑ-

local systems over any field of characteristic 0. These classes obstruct π1-sections (and hence rational points!)
in a sense which we now explain. Let C/k be a smooth projective curve over a field k of characteristic 0, and
let [C] : Spec(k)→Mg be the associated map. Then [C]∗o1,ét is nonzero if and only if the exact sequence

0→ πét
1 (Ck̄)/L2πét

1 (Ck̄)→ πét
1 (C)/L2πét

1 (Ck̄)→ Gal(k̄/k)→ 1

does not split. This invariant is closely related to the period of C, as we describe in Section 4.2.2 and
Remark 6.1.5. Similarly if [C̃] : Spec(k) → Pic1

Cg/Mg
is a morphism, the non-vanishing of [C̃]∗õ2,ét implies

that the sequence
1→ πét

1 (Ck̄)/L3πét
1 (Ck̄)→ πét

1 (C)/L3πét
1 (Ck̄)→ Gal(k̄/k)→ 1

does not split (though the converse need not hold).

We construct many examples of curves C,C ′ for which [C]∗o1,ét, [C̃ ′]∗õ2,ét are non-vanishing. For instance,
the geometric examples discussed in Section 1.3.1 (e.g. the cases in which we prove the tropical section
conjecture) have this property. But we also use a Chebotarev argument to construct many curves over
p-adic fields (and hence number fields) such that these classes do not vanish. In particular, these curves
trivially satisfy the section conjecture. For example, we show:

Theorem 1.3.6. Let Γ be a graph as in Theorem 1.3.1. Then there exists a Zariski-dense set S of closed
points of ZΓ,Z such that for each s ∈ S, there exists a Frac(W (κ(s)))-point s′ of Mg specializing to s, such
that the section conjecture is true for the curve Cg,s′ (that is, the Frac(W (κ(s)))-curve corresponding to s′).

Here κ(s) is the residue field of a closed point s and W (κ(s)) is the ring of Witt vectors of κ(s). See
Theorems 6.2.1 and 6.2.3 for a stronger and more general statement. In principle our method gives us
quantitative control (in the sense of the Chebotarev density theorem) over the Dirichlet density of the set S
in the theorem.

We believe the examples we construct of curves C exhibiting the non-vanishing of õ2,ét are particularly
interesting, as they show that this class is a genuine (non-abelian) obstruction to the existence of rational
points. Unfortunately all of our examples are of a local nature. It would be interesting to find an example
of a curve over a number field which has points everywhere locally, but which exhibits the non-vanishing of
õ2,ét. As far as we are aware there is no known example of a curve over a number field which has points
everywhere locally and is known to satisfy the section conjecture in a genuinely non-abelian way.
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1.4. Relation to previous work. The main precursor to our geometric work is the paper [Hai11], which,
as remarked earlier, proves a form of Corollary 1.3.4 for g ≥ 5 over fields of characteristic 0. See also related
work of Watanabe in positive characteristic [Wat19].

The methods we use to prove this Corollary are also closely related to work on the Franchetta conjecture,
in particular [Sch03]. Indeed, the class o1,ét is the image of the class [Pic1

Cg/Mg
] ∈ H1(Mg,Pic0

Cg/Mg
) under

the Kummer map (see section 4.2.2 and Remark 6.1.5), and so it is closely related to the period of a (relative)
curve. This class has been well-studied in the complex-analytic setting (see e.g. [Mor86, Mor89]). The class
õ2 has not, to our knowledge, been studied before, but it is related to unpublished work of Ellenberg [Ell00].

Our arithmetic examples of curves for which the section conjecture holds also seem related to those
constructed by other authors, though we do not know how to make this precise. The examples constructed
in [Sti10] and [Sti11, 6.2] have the same reduction type as the curves constructed in special cases of Theorems
6.2.1 and 6.2.3. It would be interesting to understand how o1,ét and especially õ2,ét is related to the inequality
for period and index for curves exploited by Stix. Harari and Szamuely [HS09] study curves for which the
abelianized fundamental exact sequence does not split—implicitly, analyzing o1,ét—and construct examples
where the obstruction to splitting is fundamentally global, rather than local. It would be extremely interesting
to construct such an example with õ2,ét.

1.5. Structure of the paper. In Section 2 we recall various preliminaries and notation for the moduli
spaces we use, as well as their relevant compactifications, coarse spaces, and boundary strata. Primarily, we
use the Deligne-Mumford compactification Mg of the moduli space of curves Mg, as well as the moduli space

of degree one divisor classes on the universal curve, Pic1
Cg/Mg

, and its Caporaso compactification [Cap94].

In Section 3, we recall the various versions of the Gysin maps we will use (in group-theoretic, topological,
Galois-cohomological, and étale-cohomological contexts) and prove a useful variant of the Chebotarev density
theorem (Theorem 3.1.1) which may be of independent interest. In Section 4, we define the classes o1, õ2,
which are key to our analysis, and study their basic properties, in both topological and étale cohomological
settings. Because the non-abelian group cohomology machinery required for the construction of õ2 is quite
involved, we have banished this construction and the ensuing calculations to the appendix, Section 7, to
which we refer frequently throughout the paper.

In Section 5, we begin proving the main results of the paper. We construct various surface bundles over
surfaces (with no sections) exhibiting the non-vanishing of the classes o1, õ2. From these constructions,
we deduce the non-vanishing of certain Gysin images of the classes o1, õ2 in the cohomology of boundary
components of Mg and Pic1

Cg/Mg
(over the complex numbers). Again, we banish certain involved cocycle

computations with surface groups to the appendix, Section 7. In Section 6, we use standard comparison
results to pass from these topological computations to results in étale cohomology, and then in Galois
cohomology. This is where we provide geometric examples of curves for which the section conjecture is
trivially true and prove many special cases of Conjecture 1.2.1. We then use our modified Chebotarev
density theorem (Theorem 3.1.1) to produce arithmetic examples over p-adic fields, and hence over number
fields.

1.6. Acknowledgments. Li is funded by the Simons Collaboration on Arithmetic Geometry, Number The-
ory and Computation. Litt is supported by NSF Grant DMS-2001196. This paper benefited from private
correspondence with Jordan Ellenberg, Richard Hain, and Qixiao Ma. More acknowlegments to be added
after the referee process is complete.

2. The moduli space of curves and boundary strata

We begin by indicating our conventions regarding the various moduli spaces we will use (primarily the

moduli space of curves Mg and its Deligne-Mumford compactification Mg), and recalling the combinatorics
of their boundary strata.

2.1. Mg and its boundary. Let g > 1 be an integer and let Mg be the moduli space of algebraic curves;

recall that Mg is a smooth Deligne-Mumford stack over Spec(Z). Let Mg be the Deligne-Mumford com-
pactification of Mg; recall that it is a smooth and proper Deligne-Mumford stack over Spec(Z). When there
is no chance of confusion, we will also use the notation Mg to denote the complex-analytic moduli stack of
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genus g Riemann surfaces; otherwise we will denote it by M an
g,C (and similarly with the analytification of its

Deligne-Mumford compactification).

We briefly recall the combinatorics of the boundary strata of Mg, and we interpret the inertia about
boundary components group-theoretically, in terms of Dehn twists.

Let Γ be a stable graph of genus g, i.e., a collection V of vertices and E of (undirected) edges between
pairs of vertices and a labeling h : V → Z≥0 such that:

(1) The Euler characteristic

χ(Γ) +
∑
v∈V

(2− 2h(v)) = 2− 2g,

(2) If h(v) = 0, then the degree of v is at least 3, and
(3) If h(v) = 1 then the degree of v is at least 1, and
(4) Γ is connected.

Given a vertex v of Γ, we say that h(v) is its genus.
We let

ZΓ ⊂Mg

be the locally closed substack parametrizing stable curves of type Γ, i.e., stable curves whose dual graph
is isomorphic to Γ. The codimension of ZΓ in Mg is equal to the number of edges of Γ. We say that Γ
specializes to Γ′ if ZΓ′ is contained the closure of ZΓ. Combinatorially this means that Γ can be obtained
from Γ′ by contracting edges and redistributing weights accordingly.

We briefly discuss the topology of a neighborhood of ZΓ in terms of the graph Γ. We first (non-functorially)
associate a surface ΣΓ to Γ, with a marked loop γe for each edge of Γ, as illustrated in Figure 1.2.4.
Explicitly, to each vertex v of genus g and degree d, associate an oriented surface Σv of genus g, with deg(v)
distinguished disjoint closed discs ιv,e : ∆ → Σv for each edge e adjacent to v. Then ΣΓ is obtained by
gluing Σvi \

⋃
e∈nbd(vi)

ιvi,e(∆
◦) to Σvj \

⋃
e∈nbd(vj)

ιvj ,e(∆
◦) along the circles ιvi,e(δ∆), ιvj ,e(δ∆) if e is an

edge between vi and vj . That is,

ΣΓ = colim

⊔
e∈E

δ∆⇒
⊔
v∈V

Σv \
⋃

e∈nbd(v)

ιv,e(∆
◦)

 ,

where V,E are the set of vertices and edges of Γ, respectively. The boundaries of the discs ιv,e(∆) are the
distinguished curves γe in ΣΓ. We say that Γ is the dual graph of the marked surface ΣΓ.

Lemma 2.1.1. Let EΓ ⊂ BlZΓ
Mg be the exceptional divisor. Then the inertia subgroup IΓ ⊂ π1(Mg) =

Mod(g) corresponding to EΓ is conjugate to the group generated by the Dehn multitwist about the curves γe
(corresponding to the edges of Γ).

Here Mod(g) is the mapping class group of a genus g surface Σg.

Proof. The stratum ZΓ ⊂ Mg is (locally) the intersection of the boundary divisors of Mg which contain
it, with normal crossings. The monodromy about these boundary divisors is worked out in [AMO95, The-
orem 2.2]. The lemma now follows from a local computation (of the monodromy around the blowup of an
intersection of divisors with normal crossings), contained in, for example [hes]. �

We will at some points be forced to work with the coarse spaces Mg of Mg and Mg of Mg, and the

sublocus M0
g of Mg and Mg

0
of Mg consisting of curves with trivial automorphism group.

2.2. Pic1
Cg/Mg

and its boundary. Let Cg be the universal curve over Mg. We will denote by PicdCg/Mg

the Gm-rigidification of the moduli stack whose T -points are families of smooth proper genus g curves over
T with a line bundle of relative degree d (see for e.g., [MV14, Section 2] for a precise definition). We will also
use the space Pd,g which coarsely represents the Picard functor of degree d line bundles over M0

g . Caporaso

constructs [Cap94] a Cohen-Macaulay compactification Pd,g of Pd,g, equipped with a proper map Pd,g →Mg

which will also be used.
Ebert and Randal-Williams [ERW10] also consider analytic analogues of these moduli stacks. Melo and

Viviani [MV14] construct a map from these analytic stacks to the analytifications of those described in the
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paragraph above. Both Ebert–Randal-Williams and Melo–Viviani speculate that this map is an equivalence,
but do not check it explicitly. That said, by considering the fibers over points of Mg, it is easy to see that this
map induces an isomorphism on fundamental groups. Ultimately all of the work we do here is group-theoretic
in nature, so one might equally well work with the stacks considered by Ebert and Randal-Williams. For us,
the fundamental relevant observation about these analytic stacks is that their fundamental groups are given
by

π1(Pic1
Cg/Mg

) = π1(Cg)/L
2π1(Σg).

See e.g. [ERW10, Section 2] for a discussion of the homotopy type of these stacks.
At various points in the text we will phrase things in terms of the (somewhat complicated) stacks

PicdCg/Mg
; for the reader uncomfortable with stacks, we indicate now that this usage only leads to cleaner

statements. Indeed, all of our main results could be formulated entirely in terms of the schemes M0
g and

Pd,g and their (scheme-theoretic) compactifications.
We require the following fact from Caporaso [Cap94, Section 7.2 and footnote at the bottom of page 594]:

Proposition 2.2.1. Let Γ be a stable tree and ZΓ the corresponding stratum of the boundary of Mg (the

coarse space of Mg). Then the fibers of the canonical projection Pd,g →Mg over points of ZΓ are irreducible.

We will also make use of certain blowups of Pd,g; we will require the fact that they are also Cohen-
Macaulay. For this purpose we record the following:

Lemma 2.2.2. Let X be a Cohen-Macaulay scheme and V ⊂ X an lci subscheme. Then BlV X is Cohen-
Macaulay.

Proof. This is [Kov17, Proposition 5.5(1)]. �

We will also require the following in Section 5.3, during our analysis of Gysin images of certain cohomology
classes on Mg, P1,g:

Lemma 2.2.3. Let X be a smooth complex variety and let D ⊂ X be smooth and connected of codimension

one in X. Let D̃ be a deleted neighborhood of D in X and let

π : D̃ → D

the associated punctured disc bundle. Let x ∈ D̃ be a point and y = π(x). Suppose we have a ∈ π1(D, y), b ∈
π1(X,x) such that b is a generator of the local inertia around D (i.e. it generates the kernel of the map

π1(D̃, x)→ π1(D, y) induced by π).
Then for any Zariski-open U ⊂ D containing y, there exist commuting elements a′, b′ ∈ π1(π−1(U), x)

such that

(1) π∗(a
′) ∈ π1(U, y) maps to a in π1(D, y), and

(2) b′ maps to b in π1(D̃)

Proof. For any inclusion U ⊂ D of a Zariski-open set containing y, the natural map π1(U) → π1(D) is
surjective (as D is normal). Hence we may may lift a to π1(U, y) and then to a′ ∈ π1(π−1(U), x). Now
choosing b′ to be any lift of b contained in the local inertia group of U in π−1(U) gives the result. �

An essentially identical proof gives:

Lemma 2.2.4. Let X be a normal variety over an algebraically closed field k of characteristic zero and
D ⊂ X normal of pure codimension one in X. Let ȳ : Spec(k)→ D be a k-point such that X,D are both non-

singular at ȳ (such a point exists by normality). Let a ∈ πét
1 (D, ȳ) be any element. Let ΓD ⊂ Gal(k(X)/k(X))

be the decomposition group associated to D and let b be a generator of the inertia of ΓD.
Then there exists a′ ∈ ΓD commuting with b.

Proof. As ΓD surjects onto πét
1 (D, ȳ) by normality, we may let a′ be any lift of a; it automatically commutes

with b as the inertia subgroup of ΓD is central. �
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3. Cohomological preliminaries

3.1. A form of the Chebotarev density theorem. One of the arithmetic goals of this paper is to
provide an abundance of points of Mg where certain cohomology classes do not vanish. These classes are in
cohomological degree 2, where we do not know how to directly prove the existence of such points. However,
the following variant of the Chebotarev density theorem gives such points for classes in cohomological degree
1, and will be crucial for our applications:

Theorem 3.1.1. Let X be a finite-type, integral, normal Z-scheme of dimension at least one, and let F be
a locally constant constructible sheaf of abelian groups on Xét. If

α ∈ H1(Xét,F )

is non-zero, then the set of closed points x in X such that α|x is nonzero is Zariski-dense.

Remark 3.1.2. In fact the proof gives substantially more—it gives an estimate on the Dirichlet density on
the set of closed points x with α|x non-zero. We omit this as it is unnecessary for our purposes.

Before proceeding with the proof, we will need some lemmas.

Lemma 3.1.3. Let G be a finite group, and let A be a finite Z/pnZ[G]-module. Let Hp ⊂ G be a p-Sylow
subgroup. Then the natural restriction map

Hi(G,A)→ Hi(Hp, A)

is injective for all i.

Proof. This is a direct application of Restriction-corestriction. See for e.g. [CF, Corollary 3, pg. 105]. �

Lemma 3.1.4. Let G be a finite group and let A be a finite Z/pnZ[G]-module. Then if

α ∈ H1(G,A)

is non-zero, there exists a cyclic subgroup W ⊂ G such that α|W is non-zero.

Proof. By Lemma 3.1.3, we may assume without loss of generality that G is a p-group (by replacing it by a
p-Sylow subgroup), hence nilpotent. We proceed by induction on the length of a composition series for G.
The base case, where G itself is cyclic, is trivial.

Let V ⊂ G be a cyclic, order p subgroup of the center Z(G) (which is non-empty as G is a p-group).
If α|V is non-zero the proof is complete, so we may assume α|V is zero. Then the inflation-restriction

sequence
0→ H1(G/V,AV )→ H1(G,A)→ H1(V,A|V )G/V

implies that α is the image of some
α′ ∈ H1(G/V,AV ).

By the induction hypothesis, there exists a cyclic subgroup W ′ ⊂ G/V such that α′|W ′ is non-zero.
Let W ⊂ G be a cyclic subgroup such that W/(W ∩V ) = W ′. Either W ∩V = 0, in which case the proof

is complete, or W ∩ V = V . In this latter case, there is a commutative diagram

H1(W ′, (A|W )V ) �
� // H1(W,A|W )

H1(G/V,AV )

OO

� � // H1(G,A)

OO

where the horizontal arrows are injective by the inflation-restriction sequence, and hence α|W is non-zero,
as desired. �

Proof of Theorem 3.1.1. By the Chinese remainder theorem, we may assume that F is pn-torsion for some
prime p, so that

H1(Xét,F ) = Ext1
Sh(Xét)

(Z/pnZ,F ),

where Z/pnZ is the constant sheaf. The class α corresponds to a non-split extension of lcc sheaves

0→ F → W → Z/pnZ→ 0.
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Let x̄ be a geometric point of X and let

G := im(πét
1 (X, x̄)→ Aut(Wx̄))

be the monodromy group of W .
The class α is evidently the pullback of a class

ᾱ ∈ H1(G,Fx̄).

By Lemma 3.1.4, there exists a cyclic subgroup W of G such that ᾱ|W is non-zero. Now by the classical
Chebotarev density theorem [Ser12, Theorem 9.11], the set of closed points of X whose Frobenii generate a
subgroup of G conjugate to W is Zariski-dense, from which we may conclude the result. �

Remark 3.1.5. Evidently there is no analogue of Theorem 3.1.1 for classes α ∈ Hi(Xét,F ), i > 1, as the
cohomological dimension of a finite field is 1. One might ask if there is an analogous result for classes in
higher cohomological degree on varieties over fields with higher cohomological dimension. We are unaware
of any such result, with the exception of [FSS92, Theorem 2.5] (which inspired in part the arithmetic results
of this paper).

3.2. Gysin sequences and comparison results. Having provided in Theorem 3.1.1 a mechanism for
finding non-zero specializations of a class in cohomological degree 1, we now describe our mechanism for
shifting the classes we will study—namely o1, õ2, and their étale-cohomological variants—from cohomological
degree 2 to cohomological degree 1. We will use various versions of the Gysin map, in étale, singular, group,
and Galois cohomology for this purpose; we recall these maps and the relationships between them now.

3.2.1. Gysin sequences in topology. Let π : E → B be a circle bundle, and let F be a locally constant sheaf
of abelian groups on E.

Proposition 3.2.1 (Thom-Gysin sequence). There is a long exact sequence

· · · → Hi(B, π∗F )→ Hi(E,F )→ Hi−1(B,R1π∗F )→ Hi+1(B, π∗F )→ Hi+1(E,F )→ · · ·

Proof. This is immediate from the Leray spectral sequence associated to π. �

Corollary 3.2.2 (Group-theoretic Thom-Gysin sequence). Let

G→ H

be a surjection of groups with kernel K isomorphic to Z. Then for any G-module A, there is a long exact
sequence

· · · → Hi(H,AK)→ Hi(G,A)→ Hi−1(H,AK)→ Hi+1(H,AK)→ Hi(G,A)→ · · ·

Proof. Apply Proposition 3.2.1 to the fibration K(G, 1)→ K(H, 1). �

We will typically apply Proposition 3.2.1 in the following setting. Let X be a smooth complex variety
and D ⊂ X a smooth irreducible divisor. Then a deleted neighborhood D̃ of D is (homotopic to) a circle
bundle over D via a map

π : D̃ → D.

Hence for any i ≥ 0 and any locally constant sheaf of Abelian groups F on U = X \D, there is a natural
map

gD : Hi(U,F )→ Hi(D̃,F |D̃)→ Hi−1(D,R1π∗F |D̃),

which we refer to as a Gysin map.
One may alternately view the map above as follows. Let ι : U → X be the natural inclusion, and

j : D → X the inclusion of its complement. Then the Leray spectral sequence for ι yields

Epq2 = Hp(X,Rqι∗F ) =⇒ Hp+q(U,F ).

A local computation (see e.g. [Mil98, Theorem 16.11] and the surrounding references) yields a canonical
isomorphism

j∗R1ι∗F ' R1π∗F |D̃,
and under this identification the map gD may be viewed as the same as the map

H2(U,F )→ H1(X,R1ι∗F ) ' H1(D, j∗R1ι∗F ) ' H1(D,R1π∗F |D̃),
10



where the first map arises from the Leray spectral sequence for ι.

3.2.2. Gysin sequences in étale cohomology. There is an analogous story in étale cohomology. Let R be a
complete discrete valuation ring with residue field k and fraction field K. Let GK be the absolute Galois
group of K and let I ⊂ GK be the inertia subgroup. Let A be a finite discrete GK-module of order prime
to char(k).

Proposition 3.2.3. There is a long exact sequence

· · · → Hi(k,AI)→ Hi(K,A)→ Hi−1(k,A(−1)I)→ Hi+1(k,AI)→ Hi+1(K,A)→ · · ·

Proof. This follows from [Mil06, Lemma 2.18]. �

The Gysin map Hi(K,A) → Hi−1(k,A(−1)I) globalizes as follows. Let X be a regular scheme and let
D ⊂ X be a regular subscheme of codimension one. Let U = X \ D and let F be an lcc sheaf of abelian
groups on U , tame along D, whose order is invertible on X. Let ι : U → X be the natural inclusion. Then
a local computation shows that Riι∗F = 0 for i 6= 0, 1, and that R1ι∗F is supported on D; hence the
hypercohomology spectral sequence for Rι∗F becomes a long exact sequence

· · · → Hi(X, ι∗F )→ Hi(U,F )→ Hi−1(D,R1ι∗F |D)→ Hi+1(X, ι∗F )→ Hi(U,F )→ · · · .

As before, let X be a smooth complex variety and D ⊂ X is a divisor, and let

π : D̃ → D

be the projection from a deleted neighborhood of D to D. The complete local ring ÔX,D has residue field

C(D) and fraction field Ĉ(X). Let I ⊂ GĈ(X)
be the inertia subgroup, and let U = X \D. Let ι : U ↪→ X

be the inclusion of U into X and j : D → X the inclusion of the complement. We record the evident
compatibilities between the various Gysin maps described above in this setting in the following proposition;
the proof is an exhausting matter of unwinding definitions.

Proposition 3.2.4. Let F be a locally constant sheaf of finite Abelian groups on U(C)an, and let F ét be
the associated sheaf on Uét. Then the diagram

H2(U(C)an,F )
gD //

∼
��

H1(D(C)an, R1π∗(F |D̃))

∼
��

H2(Uét,F ét) //

��

H1(Dét, j
∗R1ι∗F ét)

��
H2(Ĉ(X),F ét|Ĉ(X)

) // H1(C(D), (F ét|Ĉ(X)
(−1))I)

commutes.

4. The primary and secondary Morita classes

We now construct the classes o1, o1,ét described in the introduction, which we refer to as the primary
Morita classes. Recall that these classes will obstruct splittings of an abelianized version of the fundamental
exact sequence (1.1.1). Explicitly, in the topological setting, o1 will obstruct the splitting of sequence (4.1.1)
below, and o1,ét will obstruct the splitting of its profinite analogue.

4.1. The class o1 in the topological setting. We will give two constructions of the Morita class in the
topological setting.
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4.1.1. A group-theoretic construction. Let g > 1 and let Σg be a compact orientable surface of genus g, and
let Mod(g) be the mapping class group of Σg. Let Mod(g, 1) be the mapping class group of a pointed genus
g surface. The Birman exact sequence

1→ π1(Σg)→ Mod(g, 1)→ Mod(g)→ 1

is the exact sequence of fundamental groups associated to the fibration

Cg →Mg,

where Mg is the complex-analytic moduli stack of g curves, and Cg is the univeresal curve over Mg.
Pushing out along the Hurewicz map

Hur : π1(Σg)→ H1(Σg,Z),

we obtain a short exact sequence

(4.1.1) 0→ H1(Σg,Z)→ Mod(g, 1)/[π1(Σg), π1(Σg)]→ Mod(g)→ 1.

Definition 4.1.2 (Topological Morita class). Let

o1 ∈ H2(Mod(g), H1(Σg,Z))

be the cohomology class associated to this extension.

We may equivalently view o1 as an element of H2(Mg,V1), where V1 is the local system on Mg associated
to the Mod(g)-representation H1(Σg,Z), as Mg is a K(Mod(g), 1).

Morita announced in [Mor86] with proof in [Mor89] the following theorem. For a geometric interpretation
and proof, see [HR01, Section 7].

Theorem 4.1.3 (Morita, [Mor86, Mor89]). For g ≥ 9,

H2(Mod(g), H1(Σg,Z)) = (Z/(2g − 2)Z)o1.

4.1.2. An analytic construction. We briefly give another description of the Morita class, in terms of the
universal Picard variety. Let PicdCg/Mg

be the (rigidified) moduli space of degree d line bundles on the

universal curve, as discussed in Section 2.2. Then Pic1
Cg/Mg

is a torsor for

JCg/Mg
:= Pic0

Cg/Mg
,

the universal Jacobian, so we can think of it as an element

[Pic1
Cg/Mg

] ∈ H1(Mg, JCg/Mg
).

Let ω := Ω1
Cg/Mg

be the relative differentials, and let

π : Cg →Mg

be the projection. Then the “exponential” short exact sequence of sheaves on Mg

0→ V1 := (R1π∗Z)∨ → (R0π∗ω)∨ → JCg/Mg
→ 0

induces a boundary map
δ : H1(Mg, JCg/Mg

)→ H2(Mg,V1).

The following proposition (which we will not use) explains how to interpret the construction in the previous
section in terms of this data.

Proposition 4.1.4. Under the natural identification

H2(Mod(g), H1(Σg,Z)) ' H2(Mg,V1),

the Morita class ouniv maps to δ([Pic1
Cg/Mg

]).

Proof sketch. This is an immediate consequence of the fact that the Abel-Jacobi map

Cg → Pic1
Cg/Mg

induces an isomorphism on πab
1 on the fiber over every point of Mg, combined with the fact that for any

Riemann surface C, Pic1
C is canonically a K(π1(C)ab, 1). �
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See [ERW10, Section 2] for a discussion of the JCg/Mg
-torsors [PicdCg/Mg

].

4.2. The étale Morita class. There is some subtlety in defining the analogue of the Morita class in étale
cohomology, because it is not known that the mapping class group Mod(g) is a “good group” in the sense of
Serre (see e.g. [Far06, 3.4] for a brief discussion)—in particular, it is not immediately clear that the Birman
exact sequence remains exact upon profinite completion (though this is in fact true, and has been used in
existing literature, e.g. in [HM05, Section 3.1]). Nonetheless we give two (equivalent) constructions of an
étale-cohomological analogue of the Morita class. As before, we fix an integer g > 1 throughout.

4.2.1. A group-theoretic construction.

Proposition 4.2.1. Let p be a prime. The profinite (resp. prime-to-p) completion of the Birman exact
sequence is exact.

Proof. This follows immediately from [And74, Proposition 3], as the profinite (resp. prime-to-p) completion
of a surface group of genus g > 1 has trivial center. �

Now let k be a field and X a Deligne-Mumford stack over k; let x̄ be a geometric point of X. We denote by

πét
1 (X, x̄) the étale fundamental group of X, and by π

(p)
1 (X, x̄) the group obtained via the following pushout:

πét
1 (Xk̄, x̄) //

��

πét
1 (X, x̄)

��
̂πét

1 (Xk̄, x̄)
(p)

// π(p)
1 (X, x̄).

Here the object in the lower left is the prime-to-p completion of πét
1 (Xk̄, x̄).

Now for x̄ a geometric point of Cg,k, [C] the corresponding geometric point of Mg,k, and C the corre-
sponding curve over k̄, let (B) (resp. (Bp)) be the following sequences of profinite groups:

(B) 1→ πét
1 (C, x̄)→ πét

1 (Cg,k, x̄)→ πét
1 (Mg,k, [C])→ 1

(Bp) 1→ π
(p)
1 (C, x̄)→ π

(p)
1 (Cg,k, x̄)→ π

(p)
1 (Mg,k, [C])→ 1

By Proposition 4.2.1, sequence (B) is exact if k has characteristic 0, and sequence (Bp) is exact if k has
characteristic p.

Now taking the quotient by the derived subgroup of the group on the left gives short exact sequences

(Bab) 1→ πét
1 (C, x̄)ab → πét

1 (Cg,k, x̄)/[πét
1 (C, x̄), πét

1 (C, x̄)]→ πét
1 (Mg,k, [C])→ 1

(Bab
p ) 1→ π

(p)
1 (C, x̄)ab → π

(p)
1 (Cg,k, x̄)/[π

(p)
1 (C, x̄), π

(p)
1 (C, x̄)]→ π

(p)
1 (Mg,k, [C])→ 1

If k is a field of characteristic 0, let V̂1 be the lisse Ẑ-sheaf on Mg,k associated to the πét
1 -representation

πét
1 (C, x̄)ab (equivalently, V̂1 = (R1π∗Ẑ)∨). If k has characteristic p, let V̂1

(p)
be the lisse Ẑ(p)-sheaf associated

to π
(p)
1 (C, x̄)ab (equivalently, V̂1

(p)
= (R1π∗Ẑ(p))∨).

If k is a field of characteristic 0, sequence (Bab) gives rise to a class in H2(πét
1 (Mg,k, [C]), πét

1 (C, x̄)ab).
We let o1,ét be the image of this class in H2(Mg,k,V1) under the natural map

H2(πét
1 (Mg,k, [C]), πét

1 (C, x̄)ab)→ H2(Mg,k, V̂1).

Similarly, if k is a field of characteristic p > 0, sequence (Bab
p ) gives rise to a class inH2(π

(p)
1 (Mg,k, [C]), π

(p)
1 (C, x̄)ab);

we let o
(p)
1,ét be its image in H2(Mg,k, V̂1

(p)
).
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4.2.2. A construction using the Picard variety. We can also imitate the construction in section 4.1.2, giving
a construction which works over an arbitrary base S. As before, we may consider the torsor

[Pic1
Cg/Mg

] ∈ H1(Mg,S,ét, JCg/Mg,S).

Definition 4.2.2. Let S be a scheme and let P be the set of primes invertible in S, and define

ẐS :=
∏
p∈P

Zp.

Let

κ : H1(Mg,S,ét, JCg/Mg,S)→ H2(Mg,S,ét, (R
1π∗ẐS)∨)

be the Kummer map. Then

oS1,ét := κ([Pic1
Cg/Mg

]).

One can check (using e.g. geometric class field theory) that for S = Spec(k), these classes agree with those
defined in the previous section. We will not use this fact.

4.3. The secondary Morita classes. We now describe the classes õ2, õ2,ét, which obstruct splittings of
a 2-nilpotent version of sequence (1.1.1). For simplicity of presentation we have relegated the involved
group cohomology computations required to define these classes to the Appendix (Section 7), but we briefly
summarize them here and discuss how they are applied to our situation.

4.3.1. The topological setting. Fix an integer g > 1 and let Σg be a compact orientable surface of genus
g. Let Lkπ1(Σg) denote the lower central series of π1(Σg), i.e. Lk+1π1(Σg) := [π1(Σg), L

kπ1(Σg)] with
L1π1(Σg) = π1(Σg). Recall that from the Birman exact sequence

(4.3.1) 1→ π1(Σg)→ Mod(g, 1)→ Mod(g)→ 1

we obtained the sequence

1 // π1(Σg)/L
2π1(Σg) // Mod(g, 1)/L2π1(Σg)

p // Mod(g) // 1,

which corresponded to the class o1 ∈ H2(Mod(g), π1(Σg)/L
2π1(Σg)).

We now observe that Mod(g, 1)/L2π1(Σg) is canonically isomorphic (via the Abel-Jacobi map) to π1(Pic1
Cg/Mg

),

as for any Riemann surface C the Abel-Jacobi map induces an isomorphism π1(C)ab ' π1(Pic1
C). Now let

the group

π̃g = Mod(g, 1)×Mod(g) π1(Pic1
Cg/Mg

)

be the fiber product via the natural map Mod(g, 1) → Mod(g) and the map p. The group π̃g is the

fundamental group of the base change of the universal curve Cg to Pic1
Cg/Mg

.
We have the following surjection of short exact sequences, where the bottom row is the Birman sequence

and the rightmost square is Cartesian:

1 // π1(Σg) // π̃g //

��

π1(Pic1
Cg/Mg

) //

p

��

1

1 // π1(Σg) // Mod(g, 1) // Mod(g) // 1

.

We construct a cohomology class which obstructs the splitting of a 2-nilpotent version of the top sequence
above.

First observe that the pullback p∗o1 of the primary Morita class to π1(Pic1
Cg/Mg

) is trivial. To see this
triviality, note that this class classifies the sequence

(4.3.2) 1→ π1(Σg)/L
2π1(Σg)→ π̃g/L

2π1(Σg)→ π1(Pic1
Cg/Mg

)→ 1,

which we claim splits. Indeed, the map

π̃g/L
2π1(Σg) ' π1(Pic1

Cg/Mg
)×Mod(g) π1(Pic1

Cg/Mg
)→ π1(Pic1

Cg/Mg
)
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has a natural section, given by the diagonal map ∆. We may now apply the construction in the Appendix,
Section 7, taking π = π1(Σg), π̃ = π̃g and G = π1(Pic1

Cg/Mg
). We briefly introduce the content of this

construction, leaving the proofs to Section 7.
Consider the sequences

(4.3.3) 0→ L2π1(Σg)/L
3π1(Σg)→ π1(Σg)/L

3π1(Σg)→ π1(Σg)/L
2π1(Σg)→ 0,

(4.3.4) 0→ L2π1(Σg)/L
3π1(Σg)→ π̃g/L

3π1(Σg)→ π̃g/L
2π1(Σg)→ 1.

Note that the sequences 4.3.2, 4.3.3, 4.3.4 correspond to Sequences 7.1.2, 7.1.1, 7.1.3, respectively. Sequence
(4.3.4) is classified by a class b ∈ H2(π̃g/L

2π1(Σg), L
2π1(Σg)/L

3π1(Σg)). We define

(4.3.5) o2 := ∆∗b ∈ H2(π1(Pic1
Cg/Mg

), L2π1(Σg)/L
3π1(Σg)).

Now there are maps

m : H1(π1(Pic1
Cg/Mg

), π1(Σg)
ab)⊗2 ∪−→ H2(π1(Pic1

Cg/Mg
), (π1(Σg)

ab)⊗2)

[−,−]−→ H2(π1(Pic1
Cg/Mg

), L2π1(Σg)/L
3π1(Σg))

(given by the composition of the commutator map with the cup product), and

δ∆ : H1(π1(Pic1
Cg/Mg

), π1(Σg)
ab)→ H2(π1(Pic1

Cg/Mg
), L2π1(Σg)/L

3π1(Σg))

given by the long exact sequence in non-abelian cohomology arising from sequence 4.3.3 (and using the
π1(Pic1

Cg/Mg
)-action on π1(Σg)/L

3π1(Σg) arising from ∆). We define

H2(π1(Pic1
Cg/Mg

), L2π1(Σg)/L3π1(Σg)) := coker(m).

By Proposition 7.1.10, the composite map

δ : H1(π1(Pic1
Cg/Mg

), π1(Σg)
ab)

δ∆−→ H2(π1(Pic1
Cg/Mg

), L2π1(Σg)/L
3π1(Σg))

→ H2(π1(Pic1
Cg/Mg

), L2π1(Σg)/L3π1(Σg))

is linear (and by Proposition 7.1.11, it is independent of the π1(Pic1
Cg/Mg

)-action on π1(Σg)/L
3π1(Σg)). We

define
M(π1(Pic1

Cg/Mg
), L2π1(Σg)/L

3π1(Σg)) := coker(δ).

Definition 4.3.6. We define the secondary Morita class õ2 ∈M(π1(Pic1
Cg/Mg

), L2π1(Σg)/L
3π1(Σg)) to be

the image of o2 in this quotient group. (Compare to Definition 7.1.14.)

For the functoriality properties of this class, and details of the claims above, see Section 7.
As Pic1

Cg/Mg
is a K(π1(Pic1

Cg/Mg
), 1), we may just as well think of the class õ2 as living in a quotient

of H2(Pic1
Cg/Mg

,V2), denoted M(Pic1
Cg/Mg

,V2), where V2 is the local system corresponding to the π1-

representation L2π1(Σg)/L
3π1(Σg). We may describe the local system V2 more explicitly as follows. There

is a natural map of local systems on Mg

Z(1)→
2∧
V1,

given by the intersection pairing on V∨1 . The local system V2 is the pullback of the cokernel of this map to
Pic1

Cg/Mg
.

4.3.2. The étale setting. We only sketch the construction in the étale-cohomological setting, as it is essentially
identical to the construction in the previous section. Again, by Proposition 4.2.1, the profinite (resp. prime-
to-p) completion of the Birman sequence remains exact; hence, one may construct profinite (resp. prime-to-p)
analogues of all of the exact sequences above, as we now explain.

Let k be a field of characteristic 0. As we have already shown in Proposition 4.2.1, the profinite completion
of the Birman sequence is exact. Let x̄ be a geometric point of Cg, [C] the corresponding point of Mg, and

C the corresponding curve. We have (by geometric class field theory) a canonical isomorphism

πét
1 (Cg,k, x̄)/L2πét

1 (C, x̄) ' πét
1 (Pic1

Cg/Mg,k, x̄),
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where on the right we view x̄ as a point of Pic1
Cg/Mg,k via the Abel-Jacobi map. If k is a field of characteristic

p > 0, we have an analogous isomorphism on π
(p)
1 . Thus we may construct profinite (resp. prime-to-p)

analogues of sequences (4.3.2), (4.3.3), (4.3.4), as well as all of the other diagrams above, giving rise to
classes

o2,ét ∈ H2(πét
1 (Pic1

Cg/Mg,k, x̄), L2πét
1 (C, x̄)/L3πét

1 (C, x̄)),

õ2,ét ∈M(πét
1 (Pic1

Cg/Mg,k, x̄), L2πét
1 (C, x̄)/L3πét

1 (C, x̄))

in characteristic 0 and

o
(p)
2,ét ∈ H

2(π
(p)
1 (Pic1

Cg/Mg,k, x̄), L2π
(p)
1 (C, x̄)/L3π

(p)
1 (C, x̄)),

õ2,ét
(p) ∈M(π

(p)
1 (Pic1

Cg/Mg,k, x̄), L2π
(p)
1 (C, x̄)/L3π

(p)
1 (C, x̄))

in characteristic p > 0. We denote the lisse Ẑ-sheaf (resp. Ẑ(p)-sheaf) on Pic1
Cg/Mg,k,ét corresponding to the

coefficients in the cohomology groups above via V̂2, (resp. V̂2

(p)
). As before we may explicitly describe V̂2

as the pullback to Pic1
Cg/Mg

of the cokernel of the map of lisse sheaves on Mg

Ẑ(1)→
2∧
V̂1

arising from the intersection form, and similarly with V̂2

(p)
.

Pulling back along the natural map

H2(πét
1 (Pic1

Cg/Mg,k, x̄), L2πét
1 (C, x̄)/L3πét

1 (C, x̄))→ H2(Pic1
Cg/Mg,k,ét, V̂2)

we obtain a class in H2(Pic1
Cg/Mg,k,ét, V̂2) which we also call o2,ét, in an abuse of notation, and similarly

with õ2,ét, o
(p)
2,ét, õ2,ét

(p)
. Note that we do not know if these pullback maps are isomorphisms, as it is not clear

if Pic1
Cg/Mg,k is an étale K(π, 1).

4.4. Vanishing of o1. We now discuss certain situations where the classes o1, o
ét
1 , o

(p)
1,ét vanish for geometric

reasons, and some consequences of this vanishing for o2. We first record the following fundamental property
of o1:

Proposition 4.4.1. Let g > 2 be an integer.

(1) Let E → B be a fibration with fiber Σg, associated to a (homotopy class) of maps f : B → Mg.
Then f∗o1 = 0 if and only if central extension obtained by pulling back sequence (4.1.1) along the
map f∗ : π1(B)→ Mod(g) splits.

(2) Let C be a smooth projective curve of genus g over a field k of characteristic 0, associated to a map
Spec(k)→Mg,k. Then the natural exact sequence

0→ πét
1 (Ck̄)ab → πét

1 (C)/L2πét
1 (Ck̄)→ Gal(k̄/k)→ 1

splits if and only if o1,ét|k vanishes.
(3) Let C be a smooth projective curve of genus g over a field k of characteristic p > 0, associated to a

map Spec(k)→Mg,k. Then the natural exact sequence

0→ π
(p)
1 (Ck̄)ab → π

(p)
1 (C)/L2π

(p)
1 (Ck̄)→ Gal(k̄/k)→ 1

splits if and only if o
(p)
1,ét|k vanishes.

Proof. Immediate from the definition and functoriality of the sequences above. �

We now deduce some vanishing properties of o1.
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Proposition 4.4.2. Let R be a Noetherian complete local ring with maximal ideal m, residue field R/m = k
and fraction field K. Let C/R be a projective curve with CK smooth and Ck semistable of compact type.
Suppose Ck(k) is non-empty. Then if the residue characteristic of R is zero, o1,ét|K is zero. If the residue

characteristic is p > 0, then the image of o
(p)
1,ét under the map

H2(Mg,Fp , V̂1

(p)
)
∼→ H2(Mg,Zp , V̂1

(p)
)→ H2(K, V̂1

(p)
|K)

is zero.

Proof. We give the proof if the characteristic of k is zero; the proof in positive residue characteristic is
essentially identical, though more notationally involved. Let K be an algebraic closure of K and k an
algebraic closure of k. Let x̄ be a K-point of CK and ξ̄ a specialization of x̄. Then there is a commutative
diagram of specialization maps

πét
1 (CK , x̄)

sp //

πK

��

πét
1 (Ck, ξ̄)

πk

��
Gal(K/K) // Gal(k/k).

Now consider the quotient diagram

πét
1 (CK , x̄)/L2πét

1 (CK , x̄)
sp //

πab
K

��

πét
1 (Ck, ξ̄)/L

2πét
1 (Ck, ξ̄)

πab
k

��
Gal(K/K) // Gal(k/k).

As Ck̄ has compact type, this quotient diagram is Cartesian. But πk has a section (as Ck has a rational
point), hence the same is true for πab

k . Thus πab
K has a section, using the Cartesian-ness of the diagram

above. �

Corollary 4.4.3. Let Γ be a stable graph of genus g > 2 and let k be a field. Suppose that

(1) The underlying graph of Γ is a tree, and
(2) Aut(Γ) stabilizes some edge of Γ.

Then if k has characteristic zero, o1,ét|K̂Γ
vanishes; if k has characteristic p > 0, o

(p)
1,ét|K̂Γ

vanishes. Here

K̂Γ is defined as in Section 1.2.

Proof. Let RΓ be the complete local ring of Mg at the generic point of ZΓ, the boundary stratum of Mg

corresponding to stable curves with dual graph Γ. Let CΓ be the pullback of the universal curve to RΓ. The
special fiber of CΓ has compact type by (1), and has a rational point by (2) (namely, the node corresponding
to the stabilized edge must be rational). Hence we may conclude by Proposition 4.4.2. �

Remark 4.4.4. Let Γ be a graph as in Corollary 4.4.3, and let WΓ be the union of all the boundary divisors
of Mg,C

an
not containing the stratum ZΓ. Let UΓ be a deleted neighborhood of ZΓ in Mg,C

an \WΓ. Then an
argument essentially identical to the proof of Corollary 4.4.3 shows that o1|U vanishes. One may also make
a rigid-analytic version of this statement, but doing so is beyond the scope of this paper.

Remark 4.4.5. In any setting where o1 or o1,ét vanishes (as in Corollary 4.4.3 or Remark 4.4.4), one may
define a version of õ2 or õ2,ét. Indeed, the vanishing of these classes imply that the sequences arising in
Proposition 4.4.1 split, which suffices to apply the construction in Section 7.1. For example, there is an

analogue of õ2,ét defined in M(K̂Γ, L
2ΠΓ/L

3ΠΓ), where Γ, K̂Γ are as defined in Corollary 4.4.3 and ΠΓ is
the geometric étale fundamental group of CΓ. Likewise, there is an analogous class in M(UΓ,V2), where UΓ

is as defined in 4.4.4.
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5. The Morita classes for surface groups

Let h > 0 be an integer and Σh a compact orientable surface of genus h. In this section, we study the
pull-back of the Morita classes along maps

π1(Σh)→ Mod(g)

or
π1(Σh)→ π1(Pic1

Cg/Mg
).

In other words, given a fibration
Σg → E → Σh,

we study the obstruction to splitting the “abelianized” and “2-nilpotent” analogues of the exact sequence of
fundamental groups:

1→ π1(Σg)/L
2π1(Σg)→ π1(E)/L2π1(Σg)→ π1(Σh)→ 1

and
1→ π1(Σg)/L

3π1(Σg)→ π1(E)/L3π1(Σg)→ π1(Σh)→ 1.

The calculations in this section are key to the degeneration arguments in the applications to the section
conjecture in Section 6. We produce explicit examples (Theorem 5.1.11 through Corollary 5.1.15) where the
pull-back of the primary Morita class o1 is nontrivial. When the pullback of the Morita class o1 is trivial,
we analyze the pullback of the secondary Morita class õ2 (Definition 4.3.6). We produce explicit examples
where this secondary Morita class has exact order 2 (Theorems 5.2.9 and 5.2.10).

Our results will require substantial direct computation with cocycles; we will delay these computations
to Section 7 wherever possible.

5.1. Computing the primary Morita class for surface groups. We write

π1(Σh) =

〈
a1, · · · , ah, b1, · · · , bh

∣∣∣∣∣
h∏
i=1

[ai, bi]

〉
for the standard presentation of π1(Σh).

Fix a homomorphism
γ : π1(Σh)→ Mod(g).

Choose lifts γ̃(a1), γ̃(b1) · · · , γ̃(ah), γ̃(bh) of γ(ai), γ(bi) from Mod(g) ⊂ Out(π1(Σg)) to Mod(g, 1) ⊂ Aut(π1(Σg)).
Then

R̃ =

h∏
i=1

[γ̃(ai), γ̃(bi)]

is an inner automorphism of π1(Σg), and hence can be written as conjugation by some element r̃ ∈ π1(Σg).
Let Hur: π1(Σg)→H1(Σg,Z) be the Hurewicz (abelianization) map.

Proposition 5.1.1 (The Morita class for surface groups). Under the identification

H2(π1(Σh), H1(Σg,Z)) ' H0(π1(Σh), H1(Σg,Z)) ' H1(Σg,Z)π1(Σh),

from Corollary 7.2.4, the pull-back γ∗o1 is identified with the image of r̃ under the composition

π1(Σg)
Hur−→ H1(Σg,Z)� H1(Σg,Z)π1(Σh).

Proof. Let F 2h := 〈a1, b1, . . . , ah, bh〉 be the free group with 2h generators, and let R :=
∏h
i=1[ai, bi]. Let

〈R〉C F 2h be the normal subgroup generated by R, and let 〈R〉ab denote its abelianization.
By [Gru70, Section 3.1, Theorem 2, Proposition 3], there is a resolution of Z as a π1(Σh) module of the

form

(5.1.2) 0→ 〈R〉ab → Z[π1(Σh)]2h → Z[π1(Σh)]
ε−→ Z→ 0.

Comparing it with the exact sequence (7.2.2), we get the isomorphism

〈R〉ab ' Z[π1(Σh)],

R 7→ 1,
(5.1.3)
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hence this resolution is free.
Consider the following commutative diagram of exact sequences, where the second row is the Birman exact

sequence, the third row is the pushout of the second row along the Hurewicz map Hur: π1(Σg)→ H1(Σg,Z),
and the map from the first row to the second row comes from lifting the map γ : π1(Σh) → Mod(g) to the

map φ2 : F 2h → Mod(g, 1) defined by φ2(ai) = γ̃(ai) and φ2(bi) = γ̃(bi) for all i.

1 // 〈R〉 ι1 //

φ1

��

F 2h //

φ2

��

π1(Σh) //

γ

��

1

1 // π1(Σg)
ι2 //

H

��

Mod(g, 1) //

��

Mod(g) //

'
��

1

1 // H1(Σg,Z) // Mod(g, 1)/L2π // Mod(g) // 1

By [Gru70, Section 5.3, Theorem 1], the extension class γ∗o1 ∈ H2(π1(Σh), H1(Σg,Z)) is represented by
the vertical map H ◦φ1, where we compute H2 using the free resolution (5.1.2). Unwinding the isomorphism
given H2(π1(Σh), H1(Σg,Z)) ∼= H1(Σg,Z)π1(Σh) described in Corollary 7.2.4 gives the result. �

Remark 5.1.4. We will primarily apply this result when h = 1 — that is, for surface bundles over a torus. It
turns out this suffices for our applications. Indeed, this should be unsurprising; we are interested in proving
that the Gysin images of certain cohomology classes do not vanish. These classes live on the boundary of
Mg in cohomological degree 1. An argument analogous to the proof of Lemma 3.1.4 shows that one can
detect the non-vanishing of such classes by pulling along maps from the circle S1; the preimage of a circle
in the deleted neighborhood of a boundary component is (homotopy equivalent to) a surface of genus 1.

Suppose we are given disjoint simple closed curves l1, . . . , ln on Σg and a homeomorphism S : Σg → Σg
which permutes them up to isotopy. For each i, let Tli ∈ Mod(g) denote the corresponding Dehn twist. Let
π1(Σ1) = 〈a, b|[a, b]〉. Define γ : π1(Σ1) → Mod(g) by specifying the images of a and b as follows. Let γ(a)
be the Dehn multitwist

γ(a) := T =

n∏
i=1

Tli .

Let γ(b) = S ∈ Mod(g). As S permutes the l1, · · · , ln up to isotopy, S and T commute in Mod(g), so this
defines a genuine homomorphism. Our goal now is to compute γ∗o1 for γ of this form.

Construction 5.1.5 (Lifts of S, T ∈ Mod(g) to Mod(g, 1)). To apply Proposition 5.1.1, we need lifts

T̃ , S̃ ∈ Aut(π1(Σg)), which we now construct. Fix a point B ∈ Σg that does not lie on any of the closed

curves l1, . . . , ln. Then B is fixed by T , and we get an induced map T̃ : π1(Σg, B) → π1(Σg, B), given by
g 7→ T (g) for each g in π1(Σg, B).

For any choice of a path λ from B to S(B), there is an associated isomorphism

π1(Σg, S(B)) ' π1(Σg, B)

g 7→ λgλ−1.

Using this isomorphism, we define a lift

S̃ : π1(Σg, B)→ π1(Σg, B)

g 7→ λS(g)λ−1,

with inverse given by

S̃−1(g) = S−1(λ−1)S−1(g)S−1(λ).

Lemma 5.1.6. Let γ, S, T, λ be as above. Let h be the loop given by composing the paths T (λ)λ−1. Then

the commutator [T̃ , S̃] ∈ Aut(π1(Σg, B)) is the inner automorphism of π1(Σg, B) given by

g → hgh−1.
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Figure 5.1.10. The marked surface Σg with dual graph Cg−1

Proof. For any g ∈ π1(Σg, B),

[T̃ , S̃](g) = T̃ ◦ S̃ ◦ T̃−1 ◦ S̃−1(g) = T̃ ◦ S̃ ◦ T̃−1(S−1(λ−1gλ))

= T̃ ◦ S̃(T−1S−1(λ−1gλ)) = T̃ (λT−1(λ−1gλ)λ−1)

= T (λ)λ−1gλT (λ−1). �

Combining this lemma with Proposition 5.1.1, we get the following corollary.

Corollary 5.1.7. The class γ∗o1 is the image of Hur(T (λ)λ−1) in H1(Σg,Z)π1(Σ1).

We also make the following simple observation:

Corollary 5.1.8. Consider the connected subsurfaces of Σg with boundary components given by loops
{l1, . . . , ln}. If there exists such a subsurface Σ′ stabilized by S, i.e. S is isotopic to a mapping class
which restricts to an automorphism of Σ′, then γ∗o1 is trivial.

Proof. Pick the base point B in Construction 5.1.5 to be on Σ′, and the path λ from B to S(B) to be contained
in Σ′. Since λ does not intersect any li, the multitwist T acts on λ trivially and therefore T (λ)λ−1 = 1. Now
apply Corollary 5.1.7. �

Remark 5.1.9. Corollary 5.1.8 above could also be proven via geometric considerations; associated to the
representation π1(Σ1) → Mod(g) is a (homotopy class of) fiber bundle over Σ1 with fiber Σg, and the
hypotheses of Corollary 5.1.8 guarantee that this fiber bundle has a continuous section.

We now give an example where γ∗o1 has order g − 1. Let Σ2
1 be a genus one surface with two boundary

components m1,m2. Consider the surface obtained by taking the quotient ⋃
i∈Z/(g−1)Z

Σ2
1

 / ∼

where ∼ is the equivalence relation identifying the copy of m1 on the i-th copy of Σ2
1 with m2 on the i+ 1-th

copy of Σ2
1. This is a surface of genus g with g − 1 marked loops (namely, the images of the mi), which we

denote l1, · · · , lg−1. This marked surface is pictured in Figure 5.1.10.
Let S be the automorphism of Σg that rotates the surface clockwise 2π

g−1 radians (i.e. it is induced by

cyclically permuting the components of the disjoint union in the definition of our surface). Let Ti ∈ Mod(g)
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be the Dehn twist around the loop li ∈ Σg, as indicated in Figure 5.1.10. Then we define

γ(a) = T =

g−1∏
i=1

Ti, γ(b) = S.

Note that the dual graph of the marked surface constructed above is the stable graph Cg−1 described in the
introduction.

Theorem 5.1.11. For γ as above, the order of γ∗o1 is g − 1.

Proof. We start by constructing lifts T̃ , S̃ of T and S to Aut(π1(Σg)), following Construction 5.1.5, so that
we may apply Corollary 5.1.7 to compute γ∗o1. Fix a base point B = b1 on Σg that does not lie on
li, i = 1, . . . , g − 1. Let {b1, . . . , bg−1} be the S-orbit of B, such that S(bi) = bi+1 for i = 1, . . . , g − 2 and
S(bg−1) = b1. The map S induces an isomorphism π1(Σg, b1) ' π1(Σg, b2) and S−1 induces π1(Σg, b1) →
π1(Σg, bg−1).

Let λ1 be a path from b1 to b2, and let λi = Si−1(λ1), as indicated in blue in Figure 5.1.10. Now we have
isomorphisms π1(Σg, b2) ' π1(Σg, b1) and π1(Σg, bg−1) ' π1(Σg, b1) induced by conjugation by λ1 and λ−1

g−1.

As in Construction 5.1.5, conjugation by these isomorphisms gives us S̃ and S̃−1 : π1(Σg, b1)→ π1(Σg, b1).

By construction, Dehn twists Ti for i > 1 acts as identity on λ1 and therefore T̃ (λ1) = T1(λ1). So by
Corollary 5.1.7, it suffices to show that the image of T1(λ1)λ−1

1 in H1(Σg,Z)〈S,T 〉 has order g − 1.
We now compute the 〈S, T 〉 action on H1(Σg,Z). For an element g ∈ π1(Σg, B), we denote by [g] the

class it represents in H1(Σg,Z). Then there is a symplectic basis

{[λ1 . . . λg−1], [l1], α1, . . . , αg−1, β1, . . . , βg−1}
of H1(Σg,Z) (pictured in Figure 5.1.10). For simplicity, we denote by λ the class [λ1 . . . λg−1]. Note that the

image of T1(λ1)λ−1
1 in H1(Σg,Z) is simply [l1]; we wish to show that the image of this class in H1(Σg,Z)〈S,T 〉

has order g − 1.
Explicitly, we have:

S(λ) = λ, S([l1]) = [l1], S(αi) = αi+1, S(βi) = βi+1,

T (λ) = λ+ (g − 1)[l1], T ([l1]) = [l1], T (αi) = αi, T (βi) = βi.

As (T − 1)λ = (g − 1)[l1], the class [l1] has order dividing (g − 1) in H1(Σg,Z)<S,T>. We now show it has
order divisible by g − 1, as desired.

Indeed, consider the map H1(Σg,Z) → Z/(g − 1)Z sending [l1] to 1 and λ, αi, βj to zero. This map is
evidently S, T -equivariant (for the trivial S, T -action on Z/(g − 1)Z), and factors through H1(Σg,Z)〈S,T 〉,
which completes the proof. �

Remark 5.1.12. The strategy of the proof of Theorem 5.1.11 can be used to compute the Morita class of
many other marked surfaces with a given automorphism. For example, the graph in Figure 5.1.13, where
each vertex has genus 0, is a genus 4 stable graph, dual to the marked surface on the right. Let T be the
Dehn multitwist about the marked loops and S the order 3 automorphism given by rotating 2π

3 degrees
clockwise. By direct computation, we conclude the Morita class of the associated Σ4-bundle over the torus
is nontrivial of order 3.

Figure 5.1.13. A genus 4 curve with maximal degeneration
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We now observe that the result of Theorem 5.1.11 can be used to cheaply give many other examples of
surface bundles with non-trivial Morita class o1. We do not attempt to give an exhaustive list here, but we
indicate some strategies and examples.

Proposition 5.1.14. Let Σg1
→ E1 → Σh and Σg2

→ E2 → Σh be two fibrations, corresponding to maps
γ : π1(Σh) → Mod(g1) and ξ : π1(Σh) → Mod(g2). Let ρ : E1 → E2 be a map over Σh. The induced map
H1(Σg1

,Z)→ H1(Σg2
,Z) on the homology of the fibers gives a map

ρ∗ : H2(π1(Σh), H1(Σg1 ,Z))→ H2(π1(Σh), H1(Σg2 ,Z))

satisfying

ρ∗(γ
∗o1) = ξ∗o1.

Proof. Immediate from the functoriality of o1. �

Using Proposition 5.1.14, we can extend the result of Theorem 5.1.11 to many other graphs, described in
the following corollary.

Corollary 5.1.15. Let Σ2r
g be a genus g surface with 2r boundary components, labeled m1, · · · ,mr, n1, · · · , nr,

and let l1, · · · , lj be disjoint simple closed loops on Σ2r
g . Suppose that we are given a continuous map

f : Σ2r
g → Σ2

1

sending the mi isomorphically onto one of the boundary components of Σ2
1 and the ni isomorphically onto

the other boundary component, and sending the li to points.
Let

Ξ :=

 ⊔
i∈Z/dZ

Σ2r
g

 / ∼

be the surface obtained by taking d copies of Σ2r
g , indexed by Z/dZ, and identifying the boundary component

mj on the i-th copy with the boundary component nj on the i+ 1-th copy. Let S be the automorphism of this
surface obtained by cyclically permuting the components and let T be the Dehn multitwist about the curves li
(on all copies of Σ2r

g in the disjoint union) and the images of the mi, nj. Let Γ be the dual graph of Ξ (with
all of these marked curves). Then if G is the genus of Ξ, the induced map

γ : 〈S, T 〉 = π1(Σ1)→ Mod(G)

has the property that γ∗o1 has order divisible by d.

See Figure 5.1.16 for an illustration of the dual graphs Γ of the marked surfaces Ξ constructed as above.

Proof. The map f induces a map of surface bundles from the surface bundle in the statement of the Corollary
to the one considered in Theorem 5.1.11, over Σ1. The result is immediate from Proposition 5.1.14. �

5.2. Computing the secondary Morita classes for surface groups. We now consider situations where
o1 vanishes. Parallel to our analysis of o1 in Section 5.1, we will now study pullbacks of the secondary Morita
class õ2 to surface groups.

Suppose we are given a homomorphism γ2 : π1(Σh)→ π1(Pic1
Cg/Mg

).

Remark 5.2.1. Note that as the Abel-Jacobi map induces a canonical isomorphism

Mod(g, 1)/L2π1(Σg) ' π1(Pic1
Cg/Mg

)

so the data of a map γ2 as above is the same as a map γ : π1(Σh)→ Mod(g) and a choice of splitting of the
induced sequence

1→ H1(Σg,Z)→ π1(Σh)×Mod(g) Mod(g, 1)/L2π1(Σg)→ π1(Σh)→ 1.

Such a splitting exists if and only if γ∗o1 = 0, by definition. By Proposition 7.1.13 and the definition of õ2,
the pullback γ∗2 õ2 is independent of the given splitting. That is, γ∗2 õ2 only depends on γ, not the choice of
lift γ2. Hence if we wish to be agnostic of the choice of lift we will denote it γ∗õ2.
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Figure 5.1.16. The dual graph of a marked surface as in Corollary 5.1.15, with r = 1.
There is a map from the lower surface to the upper surface satisfying the conditions of the
corollary, given by collapsing the upper subsurface to a point. The unlabeled vertices have
genus 0.

Choose lifts γ̃2(a1), γ̃2(b1) · · · , γ̃2(ah), γ̃2(bh) of γ2(ai), γ2(bi) from π1(Pic1
Cg/Mg

) ' Mod(g, 1)/L2π1(Σg)

to Mod(g, 1). Then

R̃2 =

h∏
i=1

[γ̃2(ai), γ̃2(bi)]

is an inner automorphism of π1(Σg), and hence can be written as conjugation by some element r̃2 ∈ π1(Σg)
as in Proposition 5.1.1. Since γ2 was a homomorphism, in fact r̃2 ∈ L2π1(Σg).

To reduce notational clutter, we will write π = π1(Σg).

Proposition 5.2.2 (The secondary Morita class for surface groups). The secondary Morita class γ∗2 õ2 is
the image of r̃2 under the map

L2π → (L2π/L3π)π1(Σh)
∼→ H2(π1(Σh), L2π/L3π)→M(π1(Σh), L2π/L3π),

where the first map is the natural quotient, the isomorphism comes from Corollary 7.2.4, and the last map
is the quotient map.

Proof. As in 5.1.1 we have the following commutative diagram:

1 // 〈R〉 //

��

F 2h //

��

π1(Σh) //

γ2

��

1

1 // L2π //

Hur2

��

Mod(g, 1) //

��

π1(Pic1) //

'
��

1

1 // L2π/L3π // Mod(g, 1)/L3π // π1(Pic1) // 1.

We conclude as in Proposition 5.1.1 that the class γ∗2o2 can be represented by Hur2(r̃2). By Remark 7.1.15,
the class γ∗2o2 ∈ H2(π1(Σh), L2π/L3π) maps to γ∗2 õ2 ∈M(π1(Σh), L2π/L3π). �

Now for each g ∈ Z≥1, we give a map

γ : π1(Σ1)→ Mod(2g)

such that the Morita class γ∗o1 is trivial, and such that the secondary Morita class γ∗2 õ2 is nontrivial, where

γ2 : π1(Σ1)→ π1(Pic1
Cg/Mg

)

is a lift of γ as in Remark 5.2.1.
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Figure 5.2.3. The surface discussed in Theorem 5.2.9

Let Σ2g be a closed Riemann surface of genus 2g. Let l be a null-homologous closed curve which separates
Σ2g into two subsurfaces each of genus g. Let S be the order 2 orientation-preserving mapping class that
preserves l and interchanges the two subsurfaces shown in Figure 5.2.3. Let T be the Dehn twist around the
loop l. Observe that T and S commute, and hence give rise to a map

γ : π1(Σ1) = 〈a, b | [a, b]〉 → Mod(g),

defined by a 7→ T and b 7→ S. This map gives rise to a Σ2g-bundle over the torus Σ1; we denote its total
space by E so that we have a fiber sequence

Σ2g → E → Σ1.

We will denote by G the group π1(Σ1).

Lemma 5.2.4. The Morita class γ∗o1 is trivial.

Proof. Let B be a point in Σ2g \ l and let λ be a path connecting B and S(B). We define lifts T̃ , S̃ of T, S

as described in Construction 5.1.5. By Lemma 5.1.6, the commutator [T̃ , S̃] is an inner automorphism of
π1(Σ2g, B) given as conjugation by T (λ)λ−1.

By Corollary 5.1.7, the Morita class γ∗o1 is represented by Hur(T (λ)λ−1), that is, the homology class of
l. Since l is null-homologous, it follows that that γ∗o1 is trivial. �

Remark 5.2.5. We could also prove this by imitating the proof of Proposition 4.4.2, i.e. by contracting the
loop l above to a point.

As observed in the proof above, the loop T (λ)λ−1 is null-homologous. Thus the commutator [T̃ , S̃] ∈
Mod(g, 1) is in the kernel of the natural map ι : Mod(g, 1) → π1(Pic1). So we have already constructed a
map

γ2 : G→ π1(Pic1
Cg/Mg

)

as in Remark 5.2.1, via

γ2(a) = ι(T̃ )

and

γ2(b) = ι(S̃).

In particular, T̃ , S̃ are lifts of γ2(a), γ2(b).
Let B be a point in Σ2g \ l and let λ be a path connecting B and S(B), as shown in Figure 5.2.6. As

in the picture, we choose λ such that the loop λS(λ) is nullhomotopic. We choose a set of generators of
π1(Σ2g), denoted

{α1, β1, . . . , α2g, β2g},
in which α1, β1, . . . , αg, βg are drawn in Figure 5.2.6, and in which αi = λS(α2g+1−i)λ

−1, βi = λS(β2g+1−i)λ
−1,

for g+ 1 ≤ i ≤ 2g. We will use this basis for π1(Σ2g) for the rest of the section. The homology classes repre-
sented by these elements will be denoted by x1, y1 . . . , x2g, y2g for α1, β1, . . . , α2g, β2g; they form a symplectic
basis for H1(Σ2g,Z).
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Figure 5.2.6. Σ2g with a set of generators of π1(Σ2g)

Lemma 5.2.7. The class γ∗2o2 ∈ H2(G,L2π1(Σ2g)/L
3π1(Σ2g)) has order 2 (with o2 defined as in Equation

(4.3.5)).

Proof. By Proposition 5.2.2, the class γ∗2o2 is represented by Hur2(T (λ)λ−1) (where Hur2 : L2π1(Σ2g) →
L2π1(Σ2g)/L

3π1(Σ2g) is the natural quotient map). Observe that the null-homologous loop T (λ)λ−1 is
represented by word

∏g
i=1[αi, βi]. By Lemma 7.2.6, there is an isomorphism

L2π1(Σ2g)/L
3π1(Σ2g) ' ∧2H1(Σ2g,Z)/

〈
2g∑
i=1

xi ∧ yi

〉
induced by the map [α, β] 7→ Hur(α) ∧ Hur(β). The image of Hur2(T (λ)λ−1) under this isomorphism is∑g
i=1 xi ∧ yi, or equivalently −

∑2g
i=g+1 xi ∧ yi.

Since l is null-homologous, the Dehn twist T acts trivially on H1(Σ2g,Z) and hence on L2π/L3π. Since
S exchanges the two subsurfaces into which l separates Σ2g, we have S(xi) = x2g+1−i and S(yi) = y2g+1−i.
In particular, we have

S

(
g∑
i=1

xi ∧ yi

)
=

2g∑
i=g+1

xi ∧ yi = −
g∑
i=1

xi ∧ yi,

so the image of
∑g
i=1 xi ∧ yi in (L2π1(Σ2g)/L

3π1(Σ2g))G is 2-torsion.
We now show this element has order exactly 2 in (L2π1(Σ2g)/L

3π1(Σ2g))G, by constructing aG-equivariant
map L2π1(Σ2g)/L

3π1(Σ2g)→ Z/2Z such that the image of
∑g
i=1 xi ∧ yi is nontrivial.

As a Z-module, ∧2H1(Σ2g,Z) has basis 〈xi ∧ xj , yi ∧ yj , 1 ≤ i < j ≤ 2g, xi ∧ yj , 1 ≤ i, j ≤ 2g〉. Define a
map

ρ : ∧2H1(Σ2g,Z)/〈
2g∑
i=1

xi ∧ yi〉 → Z/2Z

by ρ(x1∧y1) = ρ(x2g ∧y2g) = 1 and ρ(xi∧yj) = 0 for the other basis elements. Since S(x1∧y1) = x2g ∧y2g,
this map is G-equivariant. As ρ(

∑g
i=1 xi ∧ yi) = 1, we’ve shown that the image of Hur2(T (λ)λ−1) in

(L2π1(Σ2g)/L
3π1(Σ2g))G has order exactly 2 as desired. �

Lemma 5.2.8. The image of H1(Σ2g,Z)G in H1(Σ2g,Z)G ⊗ (Z/2Z) is zero.

Proof. The action of G on H1(Σ2g,Z) factors through Z/2Z. Now the result follows from direct computation
from the fact that H1(Σ2g,Z) is a direct sum of free Z[Z/2Z]-modules. �

Theorem 5.2.9. The secondary Morita class γ∗2 õ2 ∈M(G,L2π1(Σ2g)/L
3π1(Σ2g)) has order exactly 2.

Proof. In this proof, we will let H = π1(Σ2g)/L
2π1(Σ2g) and ω =

∑2g
i=1 xi ∧ yi. Then by Lemma 7.2.6

we have L2π1(Σ2g)/L
3π1(Σ2g) = ∧2H/〈ω〉. From the proof of Lemma 5.2.7 we have that the element

[e] :=
∑g
i=1 xi ∧ yi ∈ ∧2H represents the class γ∗2o2 ∈ H2(G,L2π1(Σ2g)/L

3π1(Σ2g)) ' (∧2H/〈ω〉)G, and its
image under the map ρ defined in the proof of Lemma 5.2.7 is nontrivial.

Let the maps g, h be as defined in Lemma 7.2.13. We have the following commutative diagram, where
the horizontal solid arrows are the natural quotient maps:
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HG ∧H

��
∧2H

g′

��

// ∧2H/〈ω〉

g

��

// (∧2H/〈ω〉)G

hvv

ρ

}} ��

∧2(HG) //

w

��

∧2(HG)/〈ω〉

��
Z/2Z Z/2Z H2(G,∧2H/〈ω〉).

ρ′
oo

We will define ρ′ later. Here HG ∧H denotes the subspace of ∧2H spanned by elements of the form a ∧ b
with a ∈ HG, b ∈ H.

To show the image of γ∗2o2 in M(G,L2π1(Σ2g)/L
3π1(Σ2g)) is nontrivial, we will give explicit descriptions

of the images of m and δ in (∧2H/〈ω〉)G and show they go to 0 in Z/2Z under the map ρ in the commutative
diagram above. See Section 7.1 for the definition of the maps m, δ.

Analysis of the image of m: We start by analyzing the image of map m, defined as in Definition
7.1.9, using Lemma 7.2.9; we will freely use the notation and results of Section 7.2.1. As T acts on H
trivially, Equation (7.2.8) implies that for φ ∈ Hom(P1, H) to be in ker d∗2, we must have φ(e) ∈ HG. Take
φ, ψ ∈ ker d∗2; then a representative of m([φ]⊗ [ψ]) is given by equation (7.2.10):

m(φ⊗ ψ)(u) = φ(e) ∧ ψ(f)− φ(f) ∧ ψ(e).

This implies that any class in imm can be represented by an element of HG ∧ H. By Lemma 5.2.8, the
image of HG ∧H → ∧2(HG) lies in 2(∧2(HG)). Thus HG ∧H goes to 0 under the map w ◦ g′, as desired.

In particular, we see that ρ induces a natural map

ρ′ : H2(G,∧2H/〈ω〉)→ Z/2Z

fitting into the commutative diagram above.
Analysis the image of δ: Now we analyze the map

δ : H1(G,H)→ H2(G,L2π/L3π)

of Definition 7.1.12, using Lemma 7.2.11; we wish to show that ρ′ ◦ δ = 0. Note that using the resolution of
the trivial Z[G]-module described in Section 7.2.1, we have a natural surjection

ker(d∗2 : Hom(P1, H)→ Hom(P2, H))→ H1(G,H).

Because the map ρ′ ◦ δ is linear by Proposition 7.1.10, it suffices to check that it vanishes on a set of
generators of ker(d∗2). As T acts trivially on H the condition that φ ∈ Hom(P1, H) lies in ker(d2) is exactly
the condition that φ(e) ∈ HG.

Now let φ ∈ ker d∗2 represent a class [φ] ∈ H1(G,H) such that φ(e) = xi + x2n+1−i (or yi + y2n+1−i)
for some 1 ≤ i ≤ g and φ(f) = xj (or yj) for some 1 ≤ j ≤ 2g. Such φ generate ker(d∗2) by the previous

paragraph. Then we may choose φ̃(e) = αiλS(αi)λ
−1 (resp. βiλS(βi)λ

−1) and φ̃(f) = αj (resp. βj) for

1 ≤ j ≤ g or φ̃(f) = λS(α2g+1−j)λ
−1 (resp. λS(β2g+1−j)λ

−1) for g + 1 ≤ j ≤ 2g to be lifts of φ(e), φ(f) to
π1(Σ2g)/L

3π1(Σ2g).
By Lemma 7.2.11, a representative in L2π1(Σ2g)/L

3π1(Σ2g) of the class δ([φ]) is given by

[φ(e)−1, φ(f)]φ̃(f)
T

(φ̃(f))−1φ̃(e)(φ̃(e)
S

)−1.

Let l̃ ∈ π1(Σ2g, B) be a loop based at B homologous to l. If φ̃(f) = αj or βj , then T acts trivially on it

and the element φ̃(f)
T

(φ̃(f))−1 is trivial. If φ̃(f) = λS(α2g+1−j)λ
−1 or λS(β2g+1−j)λ

−1, then

φ̃(f)
T

(φ̃(f))−1 = [φ̃(f), l̃] ∈ L3π1(Σ2g)
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as l̃ ∈ L2π1(Σ2g). In both cases we have

[φ(e)−1, φ(f)]φ̃(f)
T

(φ̃(f))−1φ̃(e)(φ̃(e)
S

)−1 = [φ(e)−1, φ(f)]φ̃(e)(φ̃(e)
S

)−1 mod L3π1(Σ2g).

Now suppose φ̃(e) = αiλS(αi)λ
−1. Then

φ̃(e)
S

= λS(αi)S(λ)αiS(λ−1)λ−1 = λS(αi)S(λ)αi.

Thus

φ̃(e)(φ̃(e)
S

)−1 = αiλS(αi)λ
−1α−1

i S(λ)−1S(αi)
−1λ−1 = [αi, λS(αi)λ

−1].

So we have that

[φ(e)−1, φ(f)]φ̃(e)(φ̃(e)
S

)−1 = [φ(e)−1, φ(f)][αi, λS(αi)λ
−1] mod L3π1(Σg)

is a representative for δ([φ]). In additive notation, we’ve found that

−φ(e) ∧ φ(f) + xi ∧ x2g+1−i ∈ ∧2H

is a representative for δ([φ]). Since φ(e) ∧ φ(f) ∈ HG ∧ H, it is sent to 0 under the map w ◦ g′. Since
S(xi) = x2g+1−i, we have g′(xi ∧ x2g+1−i) = 0. Thus ρ′(δ([φ])) = 0. Now an identical argument works in

the case φ̃(e) = βiλS(βi)λ
−1, from which we conclude the result. �

Note that the only property of the Dehn twist T used in the proof of Theorem 5.2.9 is it lies in the Torelli
subgroup of Mod(g), i.e, it acts trivially on H1(Σ2g,Z). So an identical (if notationally more involved) proof
yields:

Theorem 5.2.10. Let Σ2g be a surface of genus g, and let l1, · · · , lN be disjoint simple closed curves on
Σ2g. Suppose that the dual graph Γ of this marked surface is a stable tree. Suppose moreover that Σ2g admits
an involution S permuting the li, such that the induced automorphism of Γ has the following property: S
fixes no vertices and stabilizes exactly one edge. Let E be the surface bundle over the torus induced by the
automorphism S and the Dehn multitwist about the li, and let γ : π1(Σ1) → Mod(g) be the induced map.
Then γ∗o1 = 0, and γ∗õ2 has order exactly 2.

Remark 5.2.11. Suppose Γ is any graph admitting an involution S which fixes no vertices and stabilizes a
unique edge. Suppose moreover that this edge is separating. Let ΣΓ be the corresponding marked surface,
and consider the ΣΓ-bundle over the torus obtained from the involution S and the Dehn multitwist about
the marked curves. Then we expect the methods above will show that õ2 obstructs sections for this surface
bundle.

5.3. Analytic consequences. We now deduce from the computations of Sections 5.1 and 5.2 the non-
vanishing of certain Gysin images of the primary and secondary Morita classes. In this section, we work
with complex-analytic stacks.

5.3.1. Degeneration of the primary Morita class. Let

γ : π1(Σ1) = 〈a, b | [a, b]〉 → Mod(g)

be a homomorphism such that γ(a) is a Dehn multi-twist along a collection of disjoint loops l1, · · · , ln ∈ Σg,
and such that γ(b) is (in the isotopy class of) a self-homeomorphism of Σg permuting the li. Let Γ be the
dual graph of the marked surface (Σg, l1, · · · , ln). That is, Γ is the labeled graph with one vertex for each
component of Σg \ {l1, · · · , ln}, labeled with the genus of this subsurface, and an edge between adjacent
components for each shared boundary component li (see Figure 1.2.4). Suppose Γ is a stable graph, and let
ZΓ be the corresponding stratum of the boundary of Mg.

Let

EΓ ⊂ BlZΓ
Mg

be the exceptional divisor of the blowup of Mg at ZΓ. Let Sg be the set of stable graphs of genus g with a
single edge, and Sg,Γ the set of stable graphs of genus g with a single edge which specialize to Γ. That is,

Sg corresponds to the set of boundary divisors of Mg, and Sg,Γ corresponds to the set of stable graphs with
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one edge obtainable from Γ via contraction, or equivalently the set of boundary divisors of Mg containing
ZΓ. Let

Mg,Γ = BlZΓ
Mg \

⋃
Γ′∈Sg\Sg,Γ

D̃Γ′

and
E◦Γ = EΓ ∩Mg,Γ,

where DΓ′ is the boundary divisor of Mg corresponding to Γ′, and D̃Γ′ is its proper transform in BlZΓ
Mg.

That is, Mg,Γ is the complement in BlZΓ
Mg of the proper transforms of the boundary components not

containing ZΓ, and E◦Γ is the part of the exceptional divisor contained in this complement.
There is a natural inclusion

ι : Mg ↪→Mg,Γ,

with complement E◦Γ. Now let F be a locally constant sheaf of Abelian groups on Mg. Let Ẽ◦Γ be a deleted

neighborhood of E◦Γ in Mg,Γ and

π : Ẽ◦Γ → E◦Γ
the corresponding circle bundle. Recall from Section 3.2 that there is a natural Gysin map

gΓ : H2(Mg,F )→ H1(E◦Γ, R
1π∗F |Ẽ◦Γ).

Proposition 5.3.1. With the above notation, suppose γ∗o1 6= 0. Then gΓ(o1) is non-zero of order divisible
by that of γ∗o1.

Proof. Recall that
o1 ∈ H2(Mg,V1);

we will abuse notation and also denote by V1 the Mod(g)-representation corresponding to this local system.
By Lemmas 2.1.1 and 2.2.3, the map

γ : π1(Σ1)→ Mod(g)

factors through π1(Ẽ◦Γ), with γ(a) a generator of the inertia subgroup IΓ ⊂ π1(Ẽ◦Γ) (that is, the subgroup of

π1(Ẽ◦Γ) generated by a fiber of π — namely, a Dehn multitwist).
We have a commutative diagram of short exact sequences of groups

0 // 〈a〉 //

��

π1(Σ1) //

γ

��

π1(Σ1)/〈a〉

��

// 0

0 // IΓ // π1(Ẽ◦Γ)
π∗ // π1(E◦Γ) // 1.

Writing Z for π1(Σ1)/〈a〉, this diagram induces a morphism of long exact sequences arising from the
Hochschild-Serre spectral sequence (see Section 3.2) as follows :

· · · // H2(π1(E◦Γ),VIΓ1 ) //

��

H2(π1(Ẽ◦Γ),V1)
gΓ //

γ∗

��

H1(π1(E◦Γ), (V1)IΓ) //

γ∗

��

H3(π1(E◦Γ),VIΓ1 ) //

��

· · ·

· · · // H2(Z, γ∗V〈a〉1 ) // H2(π1(Σ1), γ∗V1)
p // H1(Z, γ∗(V1)〈a〉) // H3(Z, γ∗V〈a〉1 ) // · · · .

Now
H2(Z, γ∗V〈a〉1 ) = H3(Z, γ∗V〈a〉1 ) = 0

for degree reasons, so the map p in the diagram above is an isomorphism. Hence

γ∗gΓ(o1) = p(γ∗o1),

has the same order of γ∗o1, which completes the proof. �

The following is immediate:

Corollary 5.3.2. For the graphs Γ in Corollary 5.1.15, gΓ(o1) is non-zero.
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For example, we have that gΓ(o1) is non-zero for the graph Cg−1 described in Theorem 1.3.1, as well as
the graphs depicted in Figures 5.1.13 and 5.1.16.

5.3.2. Degeneration of the secondary Morita class. We now analyze the analogous situation with õ2, in cases
that γ∗o1 = 0. Our results and proofs are almost identical to those above, except insofar as there are addi-
tional complications arising from the fact that γ∗õ2 resides in a (non-trivial) quotient of H2(π1(Σ1), γ∗V2),
namely M(π1(Σ1), γ∗V2), and from the fact that we are forced to work with the scheme P1,g rather than

Pic1
Cg/Mg

, due to the inadequacy of existing compactifications of this latter stack for our purposes. (Recall

that Pd,g coarsely represents the degree d Picard functor over the locus of automorphism-free curves M0
g ;

see Section 2.2 for details.)
As before, let

γ : π1(Σ1) = 〈a, b | [a, b]〉 → Mod(g)

be a homomorphism such that γ(a) is a Dehn multi-twist along a collection of disjoint loops l1, · · · , ln ∈ Σg,
and such that γ(b) is (in the isotopy class of) a self-homeomorphism of Σg permuting the li. Let Γ be the
dual graph of the marked surface (Σg, l1, · · · , ln). Suppose Γ is a stable tree, and let ZΓ be the corresponding

stratum of the boundary of Mg
0

(the locus in Mg parametrizing automorphism-free stable curves). Suppose
now that γ∗o1 = 0, so by Remark 4.4.5 or Remark 5.2.1, we may define γ∗õ2.

Let q : P1,g →Mg be the canonical forgetful map, and let

P1,g
0

= q−1(Mg
0
)

be the preimage of Mg
0
. Let

P1,g,Γ := Blq−1(ZΓ) P1,g
0

and let FΓ be the exceptional divisor. Let P1,g,Γ
r

be the regular locus of P1,g,Γ
0
; as P1,g is Cohen-Macaulay

and ZΓ is an lci subscheme of Mg
0
, FΓ has non-empty intersection with P1,g,Γ

r
by Lemma 2.2.2. Note that

FΓ is irreducible by Proposition 2.2.1. The map q lifts to a natural map

p : P1,g,Γ
r → Bl

ZΓ∩Mg
0 Mg

0
.

Let F ◦Γ = p−1(E◦Γ), and let

PΓ = p−1(Mg,Γ ∩ Bl
ZΓ∩Mg

0 Mg
0
) \ F ◦,sing

Γ ,

where Mg,Γ is the coarse space of Mg,Γ. Note that we have deleted the singular locus of F ◦Γ from this scheme.
Observe that P1,g is a smooth open subscheme of PΓ, and F ◦,ns

Γ is its complement; it is regular by

definition. Let F̃ ◦,ns
Γ be a deleted neighborhood of F ◦,ns

Γ , and let

π : F̃ ◦,ns
Γ → F ◦,ns

Γ

be the corresponding circle bundle. There is a natural Gysin map

gΓ : H2(P1,g,V2|P1,g
)→ H1(F ◦,ns

Γ , R1π∗V2|
F̃◦,ns

Γ

).

Let

hΓ : M(P1,g,V2|P1,g
)→ N(F ◦,ns

Γ , R1π∗V2|
F̃◦,ns

Γ

)

be the induced map, where N(F ◦,ns
Γ , R1π∗V2|

F̃◦,ns
Γ

) is the maximal quotient of H1(F ◦,ns
Γ , R1π∗V2|

F̃◦,ns
Γ

) such

that such a factorization of gΓ through M(P1,g,V2|P1,g ) exists, as described in detail in Section 7.1.3.

Proposition 5.3.3. With the above notation, suppose

γ∗õ2 ∈M(π1(Σ1), γ∗V2)

is non-zero. Then hΓ(õ2) ∈ N(F ◦,ns
Γ , R1π∗V2|

F̃◦,ns
γ

) is non-zero.
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Proof. The proof is essentially the same as that of Proposition 5.3.1. Indeed, let

γ̃ : π1(Σ1)→ π1(Pic1
Cg/Mg

)

be a lift of γ; such a lift exists as γ∗o1 = 0 by assumption. As before, γ̃ factors through π1(F̃ ◦,ns
Γ ) by Lemmas

2.1.1 and 2.2.3. So we have a commutative square (arising from a map of Gysin sequences)

M(π1(F̃ ◦,ns
Γ ),V2)

hΓ //

γ̃∗

��

N(π1(F ◦,ns
Γ ), (V2)IΓ)

γ̃∗

��
M(π1(Σ1), γ̃∗V2)

p // N(Z, γ̃(V2)〈a〉)

But the map p above is an isomorphism as

H2(Z, γ̃∗V〈a〉2 ) = H3(Z, γ̃∗V〈a〉2 ) = 0

for degree reasons. Now

γ̃∗hΓ(õ2) = p(γ̃∗õ2)

is non-zero by assumption, which completes the proof. �

We record a function-field analogue of this statement. Let ŜΓ be the fraction field of the complete local
ring of PΓ at the generic point of F ◦,ns

Γ , and let TΓ = C(F ◦,ns
Γ ) be its residue field. As before we have a Gysin

map

hΓ : M(ŜΓ, V̂2|SΓ)→ N(TΓ, V̂2(−1)|I)

(see 3.2 for details on Galois-cohomological Gysin maps and Section 7.1.3 for a recollection of the group N).

Proposition 5.3.4. For Γ as in Proposition 5.3.3, we have

hΓ(õ2,ét) 6= 0.

Proof. The proof is identical to that of Proposition 5.3.3, replacing the use of Lemma 2.2.3 with Lemma
2.2.4. �

We immediately deduce:

Corollary 5.3.5. Let Γ be as in Theorem 5.2.10. Then hΓ(õ2) (resp. hΓ(õ2,ét)) is non-zero.

In particular, this non-vanishing holds for the graphs Tg described in Theorem 1.3.1.

6. Consequences for the section conjecture

6.1. Geometric results. We now deduce the main geometric results stated in the introduction from the
Gysin computations performed in the previous section. Let k be a field, possibly of positive characteristic,
and let g > 2 be an integer.

6.1.1. Consequences arising from non-vanishing of o1. Recall that if Γ was a stable graph of genus g, we
defined ZΓ to be the corresponding stratum of the boundary of Mg,k and EΓ to be the exceptional divisor of

the blowup BlZΓ
Mg,k. We let L̂Γ be the fraction field of the complete local ring of BlZΓ

Mg,k at the generic
point of EΓ. Recall from Proposition 5.3.1 that we denoted the Gysin map into the cohomology of E◦Γ by
gΓ.

Proposition 6.1.1. Let Γ be a stable graph of genus g such that, over the complex numbers, gΓ(o1) has order
d > 1. Then over a field of characteristic 0, o1,ét|L̂Γ

has order divisible by d. Over a field of characteristic

p > 0 with p not dividing d, o
(p)
1,ét|L̂Γ

has order divisible by d.
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Proof. The idea of the proof is to use the fact that for normal varieties the first étale cohomology group
injects into the Galois cohomology of the generic point; the same is true for normal Deligne-Mumford stacks.
We use the notation from Section 5.3. Let

ι : Mg ↪→Mg,Γ

be the natural open embedding and let
j : E◦Γ ↪→Mg,Γ

its closed complement. In characteristic 0, we have a commutative diagram of Gysin maps

H2(Mg, V̂1)
gΓ //

��

H1(E◦Γ, j
∗R1π∗V̂1)� _

��
H2(L̂Γ, V̂1|L̂Γ

) // H1(k(E◦Γ), V̂1|L̂Γ
(−1)|I).

By comparison with the analytic setting gΓ(o1,ét) is non-zero; now we conclude by the injectivity of the
right-hand vertical arrow (as first étale cohomology of a smooth Deligne-Mumford stack injects into the
Galois cohomology of its generic point).

The proof in characteristic p > 0 is identical; by the argument above it suffices to show that for the Gysin
map

gΓ : H2(Mg,k, V̂1

(p)
)→ H1(E◦Γ, j

∗R1π∗V̂1

(p)
),

we have gΓ(o
(p)
1,ét) is non-zero. Now let W (k) be the Witt vectors of k and let K be the fraction field of W (k).

We have a commutative diagram

H2(Mg,k, V̂1

(p)
)

gΓ //

��

H1(E◦Γ,k, j
∗R1π∗V̂1

(p)
)

��

H2(Mg,K , V̂1

(p)
)

gΓ // H1(E◦Γ,K , j
∗R1π∗V̂1

(p)
)

where the vertical arrows are cospecialization maps, whence the result follows from the characteristic 0
situation. �

Corollary 6.1.2. Let Γ′ be a graph specializing to one of the graphs Γ appearing in Corollary 5.1.15, and
let k be a field. Let d be as in Corollary 5.1.15. Then the tropical section conjecture (Conjecture 1.2.1) is
true for Γ′, k as long as char(k) does not divide d. In fact the abelianized fundamental exact sequence

1→ πét
1 (C

K̂Γ′
)ab → πét

1 (C
K̂Γ′

)/L2πét
1 (C

K̂Γ′
)→ Gal(K̂Γ′/K̂Γ′)→ 1

does not split.

Proof. It suffices to show that o1,ét|K̂Γ′
is non-zero in characteristic 0, and o

(p)
1,ét|K̂Γ′

is non-zero in character-

istic p. By assumption there is a natural map γ : K̂Γ′ → L̂Γ, with L̂Γ defined as in Proposition 6.1.1. By
functoriality we have

γ∗o1,ét|K̂Γ′
= o1,ét|L̂Γ

in characteristic 0 and γ∗o
(p)
1,ét|K̂Γ′

= o
(p)
1,ét|L̂Γ

in characteristic p, so it suffices to show that o1,ét|L̂Γ
(resp. o

(p)
1,ét|L̂Γ

)

is non-zero. But this follows by combining Proposition 6.1.1 with Corollary 5.3.2. �

Corollary 6.1.3. Suppose char(k) = 0 or char(k) > g − 1. Then the class o1,ét|k(Mg) is non-zero. That is,
the abelianized fundamental exact sequence

1→ πét
1 (C

g,k(Mg)
)ab → πét

1 (Cg,k(Mg))/[π
ét
1 (C

g,k(Mg)
, πét

1 (C
g,k(Mg)

]→ Gal(k(Mg)/k(Mg))→ 1

does not split. In particular, the section conjecture is “trivially true” for the generic curve.

Proof. This is immediate from Corollary 6.1.2 applied in the case where Γ′ is the graph consisting of a single
vertex of genus g. �
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Remark 6.1.4. In [Hai11], Hain proves (among other things) that the section conjecture is true for the
generic curve of genus g ≥ 5 over a field of characteristic 0. Our result Corollary 6.1.3 refines this result by
showing that in fact the abelianized analogue of the fundamental exact sequence does not split (and that the
result is in fact true for all g ≥ 3).

Remark 6.1.5. In fact the estimates of Theorem 5.1.11 imply that the class o1,ét|k(Mg) has order divisible by

g − 1. Because of the relationship between the class o1,ét and the class [Pic1
Cg/Mg

] ∈ H1(Mg,S,ét, JCg/Mg,S)
discussed in 4.2.2, this estimate gives a lower bound on the period of the generic curve of genus g; namely
the period of the generic curve is divisible by g − 1. In fact it is known (by the main result of [Sch03]) that
the period of the generic curve over any field is 2g − 2; see [Ma19] for an explicit statement. Over fields
for which it applies, Corollary 6.1.3 implies that, if Cgen is the generic curve, the class of [Pic1

Cgen
] is not

divisible in the Weil-Chatelet group of Pic0
Cgen

, which was not to our knowledge previously known. It is

natural from the point of view of the section conjecture to ask if [Pic1
Cgen

] in fact generates the quotient of
the Weil-Chatelet group by its divisible part, and what its order is in this group. Of course it is also natural
to ask what is the true order of o1,ét|k(Mg). Our degeneration methods are related to those of Ma [Ma19].
See e.g. [Lic68, Lic69] for a discussion of the period-index problem for curves.

We get similar bounds for the period of the curves C
K̂Γ

above. Analogously, it would be interesting to

study the Picard groups of the curves C
K̂Γ

.

6.1.2. Consequences of the non-vanishing of õ2. We now perform a similar analysis with the class õ2. The
arguments are almost identical.

Proposition 6.1.6. Let k be a field of characteristic different from 2. Let ŜΓ be the fraction field of the
complete local ring of PΓ at the generic point of F ◦,ns

Γ , defined as in Section 5.3.2. Then if k has characteristic

0, õ2,ét|ŜΓ
is non-zero for Γ as in Theorem 5.2.10; if k has characterstic p > 2, then õ2,ét

(p)
is non-zero.

Proof. The statement in characteristic 0 is immediate from Corollary 5.3.5; if k has characteristic p > 0 it
follows as in the proof of Proposition 6.1.1. �

Corollary 6.1.7. Let k be a field of characteristic different from 2. Let Γ′ be a graph specializing to one of

the graphs appearing in Theorem 5.2.10. Let Q̂Γ′ be the fraction field of the complete local ring of P1,g at

π−1(ZΓ′). Then if C
g,Q̂Γ′

is the base change of the universal curve to Q̂Γ′ , the sequence

1→ πét
1 (C

g,Q̂Γ′
)/L3πét

1 (C
g,Q̂Γ′

)→ πét
1 (C

g,Q̂Γ′
)/L3πét

1 (C
g,Q̂Γ′

)→ Gal(Q̂Γ′/Q̂Γ′)→ 1

does not split.

Proof. It suffices to show õ2,ét|Q̂Γ′
is non-zero. But by Proposition 6.1.6, its pullback to ŜΓ is non-zero, as

desired. �

We immediately deduce:

Corollary 6.1.8. Let Γ′ be a graph specializing to one of the graphs appearing in Theorem 5.2.10. Then
the tropical section conjecture (Conjecture 1.2.1) is true for Γ′ over fields of characteristic different from 2.
In fact the sequence

1→ πét
1 (C

g,K̂Γ′
)/L3πét

1 (C
g,K̂Γ′

)→ πét
1 (C

g,K̂Γ′
)/L3πét

1 (C
g,K̂Γ′

)→ Gal(K̂Γ′/K̂Γ′)→ 1

does not split.

Proof. We have just shown that õ2,ét (resp. õ2,ét
(p)

) does not vanish after pulling back to Q̂Γ′ ; the result is
immediate. �

Finally, we have the following simple corollary:

Corollary 6.1.9. Let k be a field of characteristic different from 2, and let Q be the field of meromorphic
functions on P1,g,k. Then if g > 2 is even and if Cg,Q is the base change of the universal curve to Q, the
sequence

1→ πét
1 (Cg,Q)/L3πét

1 (Cg,Q)→ πét
1 (Cg,Q)/L3πét

1 (Cg,Q)→ Gal(Q/Q)→ 1
32



does not split.

Proof. This is immediate from Corollary 6.1.7 for the case of the graph consisting only of a single vertex. �

6.2. Arithmetic results. We now use the results above to produce arithmetic examples of curves trivially
satisfying the section conjecture, over p-adic fields and then number fields. In this section we work over Z.
We first produce examples such that o1,ét obstructs sections. For a closed point z of a scheme we denote by
κ(z) its residue field.

Theorem 6.2.1. Let Γ be a graph as in Corollary 5.1.15. There exists a Zariski-dense set S of closed points
of ZΓ such that: for each s ∈ S, there exists a Frac(W (κ(s)))-point s′ of Mg specializing to s, such that the
corresponding curve Cg,s′ trivially satisfies the section conjecture (indeed o1,ét|s′ is non-vanishing).

Proof. Notation is as in Proposition 6.1.1. We first observe that for p� g, we have

gΓ(o
(p)
1,ét) 6= 0 ∈ H1(E◦Γ,Fp , j

∗R1π∗V̂1

(p)
),

by Proposition 6.1.1 and Corollary 5.1.15. The restriction of this class to any open subscheme of E◦Γ,Fp is

non-zero by Proposition 6.1.1 as well. Hence by Theorem 3.1.1 (applied after replacing E◦Γ,Fp with an open

substack representable by a scheme), there exists a Zariski-dense set of points Sp of E◦Γ,Fp such that o
(p)
1,ét|s

is non-zero for s ∈ Sp. Let S be the union of the images of the Sp (over all p) in ZΓ.
Now for s ∈ Sp, let s′ be any deformation of s into Mg, over W (κ(s)), which is transverse to E◦Γ (i.e. a

local equation for E◦Γ pulls back to a uniformizer of W (κ(s))). Such a lift exists as BlZΓ
Mg is smooth. Now

we have a commutative diagram of Gysin maps

H2(Mg,W (κ(s)), V̂1

(p)
)

gΓ //

��

H1(E◦Γ,Fp , j
∗R1π∗V̂1

(p)
)

��

H2(Frac(W (κ(s))), V̂1

(p)
|Frac(W (κ(s)))) // H1(κ(s), j∗R1π∗V̂1

(p)
|κ(s))

where the vertical arrows are restriction. By our choice of s, we have gΓ(o
(p)
1,ét)|κ(s) non-zero. Hence o

(p)
1,ét|s′

is non-zero, as desired. �

Remark 6.2.2. The method above could be used equally well to produce examples of curves over e.g. Fq((t))
satisfying the section conjecture.

We now use an essentially identical argument to product examples where õ2,ét obstructs sections, with
some mild complications arising from the fact that õ2,ét is not a cohomology class, but rather a coset of such:

Theorem 6.2.3. Let Γ be a graph as in Theorem 5.2.10. There exists a Zariski-dense set S of closed points
of F ◦,ns

Γ such that: for each s ∈ S, there exists a Frac(W (κ(s)))-point s′ of P1,g specializing to s, such that
the corresponding curve Cg,s′ trivially satisfies the section conjecture (indeed o2,ét|s′ is non-vanishing).

Proof. By Corollary 5.3.5, we have that for p� 0,

hΓ(õ2,ét
(p)

) ∈ N(F ◦,ns
Γ,Fp , i

∗R1j∗V̂2

(p)
)

is non-zero, where j : P1,g → PΓ is the natural inclusion and i : F ◦,ns
Γ → PΓ is the inclusion of its complement.

Hence the same is true for

gΓ(o
(p)
2,ét) ∈ H

1(F ◦,ns
Γ,Fp , i

∗R1j∗V̂2

(p)
),

where o
(p)
2,ét is defined as in Section 4.3.2. Let Sp be the set of closed points of F ◦,ns

Γ such that for s ∈ S,

gΓ(o
(p)
2,ét)|κ(s) 6= 0;

by Theorem 3.1.1, this set is Zariski-dense in F ◦,ns
Γ,Fp . As before let S be the union of the Sp and, for each

s ∈ S, let s′ be a deformation of s to a Frac(W (κ(s)))-point of P1,g, transverse to F ◦,ns
Γ . Such a deformation

exists by the smoothness of PΓ.
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Now let L = Frac(W (κ(s))) and OL = W (κ(s)). We wish to show that for an L-point s′ as above, we

have õ2,ét
(p)|s′ 6= 0. We have a commutative diagram of Gysin maps

M(P1,g,OL , V̂2

(p)
)

hΓ //

��

N(F ◦,ns
Γ,OL

, j∗R1π∗V̂2

(p)
)

��

M(L, V̂2

(p)
|L) // N(κ(s), j∗R1π∗V̂2

(p)
|κ(s))

By assumption, gΓ(o
(p)
2,ét)|κ(s) 6= 0; it thus suffices to show that this class is not annihilated in the passage

from H1(κ(s), j∗R1π∗V̂2

(p)
|κ(s)) to N(κ(s), j∗R1π∗V̂2

(p)
|κ(s)).

As hΓ(o
(p)
2,ét) 6= 0 by assumption, it suffices to show that the natural map

H1(P1,g,OL , V̂1

(p)
)→ H1(L, V̂1

(p)
|L)

is surjective, by the definition of N (see Section 7.1.3). Now

H1(P1,g,OL , V̂1

(p)
)→ H1(OL, V̂1

(p)
|OL)

is surjective because it has a section induced by the structure map P1,g,OL → Spec(OL). Thus it suffices to
show that the natural map

H1(OL, V̂1

(p)
|OL)→ H1(L, V̂1

(p)
|L)

is surjective. But this follows from the inflation-restriction exact sequence; if I ⊂ GL := Gal(L/L) is the
inertia subgroup, the cokernel of the above map injects into

H1(I, V̂1

(p)
)GL/I .

By assumption Γ is a stable tree, so I acts trivially on V̂1

(p)
. Thus this group is simply Homcts(I

ab, V̂1

(p)
)GL/I .

But this last vanishes for weight reasons; Iab has weight −2 and V̂1

(p)
has weight −1 (again as Γ is a tree). �

Remark 6.2.4. One may immediately use the above theorems to construct examples of curves over number
fields for which the existence of π1-sections is obstructed by o1,ét (resp. õ2,ét) by algebraization and Artin
approximation. See e.g. [Sti10, 7.5] for an explanation.

7. Appendix: Group cohomology constructions and computations

7.1. Obstructions arising from extensions by a 2-nilpotent group. Suppose we are given a short
exact sequence of continuous maps of (not necessarily commutative) discrete or pro-finite groups

1→ π → π̃ → G→ 1.

Then conjugation induces an outer action of G on π.

Let π = L1π ⊃ L2π ⊃ . . ., where Lk+1π = [π, Lkπ], be the lower central series of π.

7.1.1. Non-abelian cohomology computations. Consider the sequences

(7.1.1) 0→ L2π/L3π → π/L3π → π/L2π → 0,

(7.1.2) 0→ π/L2π → π̃/L2π → G→ 1,

and

(7.1.3) 0→ L2π/L3π → π̃/L3π → π̃/L2π → 1.

Definition 7.1.4. Let

1→ A→ B → C → 1

be a split exact sequence of groups, with A abelian. For two sections s1, s2 : C → B, we say they are
equivalent if there exists some element a ∈ A such that s1(c) = as2(c)a−1 for any c ∈ C.
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Lemma 7.1.5. Let
1→ A→ B → C → 1

be a exact sequence of (discrete or pro-finite) groups, with A abelian. Then the set of continuous sections
s : C → B up to equivalence is, if non-empty, canonically a torsor for H1(C,A).

Proof. This is [NSW13, I.5, Exercise 4], taking f = id, G = G′. �

Proposition 7.1.6. The set of continuous sections to sequence 7.1.2 up to equivalence is, if non-empty,
canonically a torsor for H1(G, π/L2π).

Proof. Immediate from Lemma 7.1.5. �

Definition 7.1.7. Suppose sequence 7.1.2 admits a splitting s, inducing an action of G on π/L3π. Let

δs : H1(G, π/L2π)→ H2(G,L2π/L3π)

be the boundary map in non-abelian cohomology arising from sequence 7.1.1. Concretely, for a cocycle
x : G → π/L2π, we lift it to a continuous map x̃ : G → π/L3π and define a cocycle representing the class
δs([x]) as

(7.1.8) δs(x)(a, b) = x̃(a)(x̃(b))s(a)(x̃(ab))−1

where here a ∈ G acts on x̃(b) ∈ π/L3π via the splitting s. For reference, see [Ser97, Section 5.6, 5.7].

Definition 7.1.9. We define a map m : H1(G, π/L2π)⊗2 → H2(G,L2π/L3π) as the composition of the cup
product with the map on H2 induced by the commutator map:

m : H1(G, π/L2π)⊗2 ∪−→ H2(G, (π/L2π)⊗2)
[−,−]−→ H2(G,L2π/L3π).

Explicitly, the second map is induced by the following map between coefficients:

(π/L2π)⊗2 → L2π/L3π

α⊗ β 7→ α̃β̃α̃−1β̃−1

where α̃, β̃ are lifts of α, β ∈ π/L2π to π/L3π.

Note that the map m above is defined independent of any choice of section to sequence 7.1.2.

Proposition 7.1.10 (Compare to [Ell00, Proposition 1]). Let δs and m be the maps defined in Definitions
7.1.7, 7.1.9. Then we have

δs(x+ y)− δs(x)− δs(y) = m(x⊗ y).

Proof. Let x, y : G→ π/L2π be cocycles representing classes in H1(G, π/L2π) and let x̃, ỹ : G→ π/L3π be
continuous set-theoretic lifts of x, y from Sequence 7.1.1.

By definition, a cocycle representing the class x⊗ y ∈ H2(G, (π/L2π)⊗2) is

x⊗ y : a, b 7→ x(a)⊗ y(b)a.

So m(x⊗ y) can be represented by

m(x⊗ y) : a, b 7→ [x̃(a), ỹ(b)a]

where the choice of the action of a ∈ G on ỹ(b) does not affect this commutator.
Now we have

(δs(x+ y)− δs(x)− δs(y))(a, b)

=x̃(a)ỹ(a)x̃(b)aỹ(b)aỹ−1(ab)x̃−1(b)ax̃−1(a)ỹ(ab)ỹ−1(b)aỹ−1(a)

=x̃(a)ỹ(a)x̃(b)aỹ−1(a)ỹ(a)ỹ(b)aỹ−1(ab)x̃−1(b)ax̃−1(a)ỹ(ab)ỹ−1(b)aỹ−1(a)

=x̃(a)ỹ(a)x̃(b)aỹ−1(a)x̃−1(b)ax̃−1(a)ỹ(a)ỹ(b)aỹ−1(ab)ỹ(ab)ỹ−1(b)aỹ−1(a)

=x̃(a)[ỹ(a), x̃(b)a]x̃−1(a)

=[ỹ(a), x̃(b)a].

Here, we used the fact that ỹ(a)ỹ(b)aỹ−1(ab), [ỹ(a), x̃(b)a] ∈ L2π/L3π is in the center of π/L3π. And we
conclude by noticing δs(x+ y)− δs(x)− δs(y) does not change if we switch x, y. �
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In particular δs is a homomorphism of abelian groups modulo the image of m.

Proposition 7.1.11. Let s1, s2 be sections to sequence 7.1.2. Following Definition 7.1.7, each section
induces a G-action on π/L3π and hence a boundary map in cohomology

δsi : H1(G, π/L2π)→ H2(G,L2π/L3π).

Then

δs1(x)− δs2(x) = m([s1 − s2]⊗ x),

where m is the map defined in Definition 7.1.9 and [s1 − s2] ∈ H1(G, π/L2π) is the element classifying
the difference between s1, s2 from Proposition 7.1.6. This class is represented by the cocycle cs2s1 : g 7→
s1(g)s2(g)−1.

Proof. Following Definition 7.1.7, if we denote by x̃ : G→ π/L3π a continuous lift of x, then

δsi(x)(a, b) = x̃(a)x̃(b)si(a)x̃−1(ab)

where a ∈ G acts on x̃(b) ∈ π/L3π through conjugation by s̃i(a), where s̃i : G→ π̃/L3π is a continuous lift
of si to π̃/L3π, i.e.

x̃(b)si(a) = s̃i(a)x̃(b)s̃i(a)−1.

Note that since different choices of lifts differ by an element in L2π/L3π, which is in the center of π/L3π,
this action is independent of s̃i, justifying the notation. So now we have

(δs1(x)− δs2(x))(a, b) =x̃(a)s̃1(a)x̃(b)s̃1
−1(a)x̃−1(ab)x̃(ab)s̃2(a)x̃−1(b)s̃2

−1(a)x̃−1(a)

=x̃(a)s̃1(a)x̃(b)s̃1
−1(a)s̃2(a)x̃−1(b)s̃2

−1(a)x̃−1(a)

=x̃(a)s̃1(a)s̃2
−1(a)s̃2(a)x̃(b)s̃2

−1(a)s̃2(a)s̃1
−1(a)s̃2(a)x̃−1(b)s̃2

−1(a)x̃−1(a)

=x̃(a)[s̃1(a)s̃2
−1(a), s̃2(a)x̃(b)s̃2

−1(a)]x̃−1(a)

=m(cs2s1 ⊗ x)(a, b).

Here we used the fact that m(cs2s1 ⊗ x)(a, b) = [c̃s2s2(a), x̃(b)a] is defined independent of the choice of
the G-action on π/L3π, so we chose to take the action to be conjugation by s̃2(a). Also, the elements
s̃1(a)s̃2

−1(a), s̃2(a)x̃(b)s̃2
−1(a) ∈ π/L3π, which implies their commutator lies in L2π/L3π and hence com-

mutes with x̃(a) ∈ π/L3π.
�

7.1.2. Construction of the class õ2.

Definition 7.1.12. Let

H2(G,L2π/L3π) := H2(G,L2π/L3π)/ im(m).

By Proposition 7.1.11, for any two sections s1, s2 to sequence 7.1.2, the composite maps

H1(G, π/L2π)
δsi−→ H2(G,L2π/L3π)→ H2(G,L2π/L3π)

are canonically identified. We denote this (canonical) composite map by δ. Note that by Proposition 7.1.10,
δ is linear.

As L2π/L3π is abelian, sequence 7.1.3 gives rise to a class in b ∈ H2(π̃/L2π, L2π/L3π). Given a splitting
s of sequence 7.1.2, there is an induced class s∗b ∈ H2(G,L2π/L3π); this class depends on s.

Proposition 7.1.13. Suppose s1, s2 are two sections to sequence 7.1.2, with difference

[s1 − s2] ∈ H1(G, π/L2π).

Denote by s∗1b− s∗2b the image of s∗1b− s∗2b in H2(G,L2π/L3π). Then we have

s∗1b− s∗2b = δ([s1 − s2]), where

δ : H1(G, π/L2π)→ H2(G,L2π/L3π)

is the map from Definition 7.1.12.
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Proof. By definition, the extension class b ∈ H2(π̃/L2π, L2π/L3π) is represented by a cocycle g1, g2 7→
g̃1g̃2g̃1g2

−1
where g̃1, g̃2, g̃1g2 are lifts of g1, g2, g1g2 ∈ π̃/L2π to π̃/L3π. Thus, the induced class s∗i b is

represented by

x, y 7→ s̃i(x)s̃i(y)s̃i
−1(xy)

where s̃1, s̃2 : G→ π̃/L3π are continuous lifts of s1, s2.
We will prove the desired statement by showing

s∗1b− s∗2b = δs2([s1 − s2]) ∈ H2(G,L2π/L3π).

Let cs2s1 : g 7→ s1(g)s2(g)−1 be a cocycle representing the class [s1 − s2]. Then g → s̃1(g)s̃2
−1(g) is a

continuous lift of cs2s1 and by Definition 7.1.7, we have

δs2(cs2s1)(x, y) =s̃1(x)s̃2
−1(x)(s̃1(y)s̃2

−1(y))s2(x)s̃2(xy)s̃1
−1(xy)

=s̃1(x)s̃2
−1(x)s̃2(x)s̃1(y)s̃2

−1(y)s̃2
−1(x)s̃2(xy)s̃1

−1(xy)

=s̃1(x)s̃1(y)s̃2
−1(y)s̃2

−1(x)s̃2(xy)s̃1
−1(xy)

=(s̃1(x)s̃1(y)s̃1
−1(xy))(s̃1(xy)s̃2

−1(xy))(s̃2(xy)s̃2
−1(y)s̃2

−1(x))(s̃2(xy)s̃1
−1(xy))

=s∗1b(x, y)− s∗2b(x, y)

In the last step, we used that the element s̃1(xy)s̃2
−1(xy) lies in π/L3π and the element s̃2(xy)s̃2

−1(y)s̃2
−1(x)

lies in L2π/L3π. So they commute with each other. �

Definition 7.1.14. Let

M(G,L2π/L3π) = coker(δ : H1(G, π/L2π)→ H2(G,L2π/L3π)).

Then for any section s : G → π̃/L2π of sequence 7.1.2, we let õ2 ∈ M(G,L2π/L3π) be the image of s∗b.
This class is independent of s by Proposition 7.1.13.

Remark 7.1.15. Let γ : G′ → G be a group homomorphism. Pulling back the sequence

1→ π → π̃ → G→ 1

along this line, we obtain a sequence

1→ π → π̃ ×G G′ → G′ → 1

with analogous properties to the corresponding sequence for G; hence we may define M(G′, L2π/L3π). There
exists a unique map γ∗ : M(G,L2π/L3π)→M(G′, L2π/L3π) which makes the following diagram commute:

H2(G,L2π/L3π)
γ∗ //

��

H2(G′, L2π/L3π)

��
M(G,L2π/L3π)

γ∗ // M(G′, L2π/L3π)

From the definition it is clear that γ∗õ2 = õ2.

Proposition 7.1.16. The obstruction õ2 ∈M(G,L2π/L3π) vanishes if the sequence

1→ π/L3π → π̃/L3π → G→ 1

splits.

Proof. Immediate from the definition. �
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7.1.3. Gysin images of õ2. Throughout this paper we will consider various Gysin images of õ2, as we now
explain. Suppose that we are in the situation described above, and moreover G sits in a short exact sequence

1→ I → G→ H → 1

with I = Z (in the discrete setting) or I = Ẑ (in the pro-finite setting). Then as in Section 3.2, we have a
natural (Gysin) map

g : H2(G,L2π/L3π)→ H1(H, (L2π/L3π)I)

arising from the Hochschild-Serre spectral sequence.
We let

H1(H, (L2π/L3π)I) := coker(g ◦m : H1(G, π/L2π)⊗2 → H1(H, (L2π/L3π)I))

and define

N(H, (L2π/L3π)I) := coker(g ◦ δ : H1(G, π/L2π)→ H1(H, (L2π/L3π)I)).

Then by definition the natural Gysin map g above descends to a map

h : M(G,L2π/L3π)→ N(H, (L2π/L3π)I).

We now discuss the functoriality properties of the map h defined above. Suppose we have a map of short
exact sequences of groups

1 // I ′ //

∼
��

G′ //

γ

��

H ′ //

η

��

1

1 // I // G // H // 1

inducing an isomorphism I ′
∼→ I as above.

Pulling back the sequence

1→ π → π̃ → G→ 1

along this line, we obtain a sequence

1→ π → π̃ ×G G′ → G′ → 1

with analogous properties to the corresponding sequence for G; hence we have an analogous map

h′ : M(G′, L2π/L3π)→ N(H ′, (L2π/L3π)I′).

It is immediate from the functoriality of the Hochschild-Serre spectral sequence that the evident square

M(G,L2π/L3π)
h //

γ∗

��

N(H, (L2π/L3π)I)

η∗

��
M(G′, L2π/L3π)

h′ // N(H ′, (L2π/L3π)I′)

commutes.

7.2. Cohomological preliminaries for surface groups. We now specialize to the case where G is a
surface group, i.e. we let G = π1(Σh) for some h ≥ 1. G has presentation

G = 〈a1, b1 · · · , ah, bh |
h∏
i=1

[ai, bi]〉.

We will make the computations described in Section 7.1 explicit in this case.
Let G act on Z[G] by multiplication on the left. We begin by introducing a finite free resolution of Z as

a (trivial) Z[G]-module. Let Ri = [ai, bi] and R =
∏h
i=1Ri. As a convention, we set a0 = b0 = 1.
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Proposition 7.2.1 ([GM15], Proposition 2.1). There is an exact sequence of Z[G]-modules

(7.2.2) 0→ P2
d2−→ P1

d1−→ P0
ε−→ Z→ 0

where P0 = Z[G] with generator v, P1 = (Z[G])2h with generators ei, fi, i = 1, . . . , h and P2 = Z[G] with
generator u. Then, on the generators the maps are defined as

ε : v 7→ 1,

d1 : ei 7→ (ai − 1)v,

fi 7→ (bi − 1)v,

d2 : u 7→
h∑
i=1

(
∂R

∂ai
ei +

∂R

∂bi
fi

)
,

where the partial derivatives are the Fox derivatives.

Let M be a left G-module and apply the functor Hom(•,M) to Sequence (7.2.2). We get a sequence

0←− Hom(P2,M)
d∗2←− Hom(P1,M)

d∗1←− Hom(P0,M)←− . . .

whose cohomology is precisely H∗(G,M). Since P2 is a free Z[G]-module generated by a single element u,
the group Hom(P2,M) is isomorphic to M via the map φ 7→ φ(u). Thus, each class in H2(G,M) can be
represented by an element of M . The following corollary gives an explicit description of H2(G,M) in these
terms.

Corollary 7.2.3 ([GM15] Corollary 3.1, [Lyn50] Corollary 11.2). For any left G-module M ,

H2(G,M) 'M/

(
∂R

∂a1
,
∂R

∂b1
, . . . ,

∂R

∂ah
,
∂R

∂bh

)
M.

Corollary 7.2.4. Let I := ker(ε). For any left G-module M ,

H2(G,M) 'M/IM = MG.

Proof. Using Corollary 7.2.3, the only thing to show is
(
∂R
∂a1

, ∂R∂b1 , . . . ,
∂R
∂ah

, ∂R∂bh

)
M = IM . Since

∂R

∂ai
=

i−1∏
j=0

Rj

 ai(1− bi)a−1
i ,

∂R

∂bi
=

i−1∏
j=0

Rj

 aibi(1− a−1
i )b−1

i ,

we get an inclusion
(
∂R
∂a1

, ∂R∂b1 , . . . ,
∂R
∂ah

, ∂R∂bh

)
M ⊂ IM .

The Z[G]-module IM is generated by elements of the form (1− ai)m, (1− bi)m, i = 1, . . . , h,m ∈M . For
any m ∈M , let m′i = aim and m′′i = bim. Then we have

(1− ai)m =− aib−1
i a−1

i

i−1∏
j=0

Rj

−1

∂R

∂bi
m′′i , (1− bi)m = a−1

i

i−1∏
j=0

Rj

−1

∂R

∂ai
m′i.

So we have the reverse inclusion and conclude the statement. �

Note that the abstract isomorphism in the statement of Corollary 7.2.4 follows from Poincaré duality for
surfaces; the purpose of the corollary is to make this isomorphism explicit in terms of the free resolution of
Proposition 7.2.1.

Proposition 7.2.5. Let φ ⊗ ψ ∈ (ker d∗2)⊗2 ⊂ Hom(P1,M)⊗2 represent the class [φ] ⊗ [ψ] ∈ H1(G,M)⊗2.
Then the class [φ] ∪ [ψ] ∈ H2(G,M⊗2) is represented by a cocycle φ ∪ ψ ∈ Hom(Z[G],M⊗2) defined by
u 7→ φ ⊗ ψ(∆11(u)) where ∆11 : P2 → P1 ⊗ P1 is a part of a diagonal approximation ∆ : P → P ⊗ P
constructed in [GM15, Theorem 2.2].

Proof. This immediately follows from the definition of cup product. See for example [Bro82, Section 5.3]. �
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Lemma 7.2.6. The map

L2G/L3G→ (∧2(G/L2G))/〈
g∑
i=1

ai ∧ bi〉

[x, y] 7→ [x] ∧ [y]

is an isomorphism where [x] is the image of x ∈ G under the natural map G→ G/L2G.

Proof. Let F = 〈a1, b1, . . . , ag, bg〉 be the free group. By statement (4) in [Ser06, Section 4.3, page 20], the
graded Lie algebra (F/L2F )⊕(L2F/L3F ) with the bracket operation given by the commutator is isomorphic
to (F/L2F )⊕ (∧2(F/L2F )). Then by [Lab70, Section 1, Theorem on page 17], the statement in our lemma
for a group G with a single defining relation follows. �

7.2.1. Computation for the surface group π1(Σ1). Now we specialize to the case h = 1 and carry out some
computations to be used in Section 5.2.

Let

G = π1(Σ1) = 〈S, T |[S, T ]〉
with an outer action on π1(Σg) given by a sequence

1→ π1(Σg)→ π1(E)→ G→ 1,

where E is a Σg-bundle over Σ1. In this section, we will be considering the two G-modules π1(Σg)/L
2π1(Σg)

and L2π1(Σg)/L
3π1(Σg).

The free resolution of Z as a Z[G]-module in Proposition 7.2.1 in this case is given as follows:

(7.2.7) 0 −→ P2
d2−→ P1

d1−→ P0
ε−→ Z −→ 0

where P2 = Z[G] with generator u, P1 = Z[G]2 with generators e, f and P0 = Z[G] with generator v. The
maps are:

d2(u) =(1− S)e− (1− T )f,

d1(e) =(T − 1)v, d1(f) = (S − 1)v.

Appling the functor Hom(•, π1(Σg)/L
2π1(Σg)) to this resolution, we see that the groupsH∗(G, π1(Σg)/L

2π1(Σg))
are given by the cohomology of the sequence

0←− Hom(P2, π1(Σg)/L
2π1(Σg))

d∗2←− Hom(P1, π1(Σg)/L
2π1(Σg))

d∗1←− Hom(P0, π1(Σg)/L
2π1(Σg))←− . . .

Cocycles in ker d∗2 are given by φ ∈ Hom(P1, π1(Σg)/L
2π1(Σg)) satisfying

(7.2.8) (1− S)φ(e)− (1− T )φ(f) = 0.

Lemma 7.2.9. Let φ, ψ ∈ ker d∗2 represent classes [φ], [ψ] ∈ H1(G, π1(Σg)/L
2π1(Σg)). Then a cocycle in

Hom(P2, L
2π1(Σg)/L

3π1(Σg)) representing the class m([φ]⊗ [ψ]) is given by

(7.2.10) m(φ⊗ ψ)(u) = φ(e) ∧ Tψ(f)− φ(f) ∧ Sψ(e).

Proof. By Proposition 7.2.5, an element in Hom(P2, π/L
2π) which represents the class

[φ] ∪ [ψ] ∈ H2(G, (π1(Σg)/L
2π1(Σg))

⊗2)

is given by

(φ⊗ ψ ◦∆11)(u) = φ(e)⊗ ψ(Tf)− φ(f)⊗ ψ(Se)

where the map

∆11 : u 7→ e⊗ Tf − f ⊗ Se
is from [GM15, Theorem 2.2]. Thus by Definition 7.1.9 and Lemma 7.2.6,

m(φ⊗ ψ)(u) = φ(e) ∧ Tψ(f)− φ(f) ∧ Sψ(e)

represents the class m([φ]⊗ [ψ]) ∈ H2(G,L2π1(Σg)/L
3π1(Σg)). �
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In the following, we consider the case where the sequence

1→ π1(Σg)/L
2π1(Σg)→ π1(E)/L2π1(Σg)→ G→ 1

splits. So we fix a section s : G → π1(E)/L2π1(Σg) and let S, T act on π1(Σg)/L
3π1(Σg) via the section s.

We compute the boundary map δs from Definition 7.1.7 explicitly in the following lemma.

Lemma 7.2.11. Let φ ∈ ker d∗2 represent the class [φ] ∈ H1(G, π1(Σg)/L
2π1(Σg)). Then a cocycle in

Hom(P2, L
2π1(Σg)/L

3π1(Σg)) representing the class δs([φ]) is given by

δs(φ)(u) = [φ̃(e)
−1
, φ̃(f)]

(
φ̃(f)

T
)
φ̃(f)

−1
φ̃(e)

(
φ̃(e)

S
)−1

where φ̃(e), φ̃(f) ∈ π1(Σg)/L
3π1(Σg) are lifts of φ(e), φ(f) ∈ π1(Σg)/L

2π1(Σg).

Proof. We start with giving an embedding of the resolution (7.2.7) into the standard resolution of Z as a
Z[G]-module as follows:

0 // Z[G]
d2 //

ι2

��

Z[G]2
d1 //

ι1

��

Z[G]
ε //

'
��

Z //

'
��

0

· · · // Z[G3]
D2 // Z[G2]

D1 // Z[G]
ε // Z // 0

where the maps are given by
ι2(u) = (ST, S, T )− (S, T, 1),

ι1(e) = −(T, 1), ι1(f) = −(S, 1).

Since ι1 is injective and Z[G2] = ⊕g∈GZ[G](1, g) is a free Z[G]-module, there exists

φ′ ∈ kerD∗2 ⊂ HomZ[G](Z[G2], π1(Σg)/L
2π1(Σg))

such that φ′((1, T−1)) = (φ(e)−1)T
−1

, φ′((1, S−1)) = (φ(f)−1)S
−1

, or equivalently ι1 ◦ φ′ = φ. Now direct
computation shows that an inhomogeneous cocycle x : G → π1(Σg)/L

2π1(Σg) representing the class [φ] ∈
H1(G, π1(Σg)/L

2π1(Σg)) is given by

x(T−1) = (φ(e)−1)T
−1

, x(S−1) = (φ(f)−1)S
−1

and hence
x(T ) = φ(e), x(S−1T ) = (φ(f)−1φ(e))S

−1

Now choose a lift x̃ of x to π1(Σg)/L
3π1(Σg) such that

x̃(T−1) = (φ̃(e)
−1

)T
−1

, x̃(S−1T ) = (φ̃(f)
−1
φ̃(e))S

−1

Using Equation (7.1.8) in Definition 7.1.7, we may compute an inhomogeneous cocycle representing
δs([x]) = δs([φ]). Translating back into homogeneous cocycles and evaluating on ι2(u) gives:

(δs(x)(S−1T, T−1))S(δs(x)(T−1, S−1T ))ST )−1

=

((
φ̃(e)

−1
φ̃(f)

)S−1 (
φ̃(e)

T−1
)S−1T (

φ̃(f)
S−1
)−1

)S(φ̃(e)
T−1

(
φ̃(e)

−1
φ̃(f)

)S−1 (
φ̃(f)

S−1
)−1

)ST−1

=[φ̃(e)
−1
, φ̃(f)]

(
φ̃(f)

T
)
φ̃(f)

−1
φ̃(e)

(
φ̃(e)

S
)−1

,

as desired. �

Remark 7.2.12. It might not seem obvious that the element

(
φ̃(f)

T
)
φ̃(f)

−1
φ̃(e)

(
φ̃(e)

S
)−1

is in L2π1(Σg).

But if we apply the natural map π1(Σg)/L
3π1(Σg)→ π1(Σg)/L

2π1(Σg) to it, we get T (φ(f))−φ(f)+φ(e)−
S(φ(e)), which is 0 by Equation (7.2.8). Thus this claim follows from the fact that φ was a cocycle.

Finally, we record the following diagram, which will be useful for our computations in Section 5.2.
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Lemma 7.2.13. Let H = π1(Σg)/L
2π1(Σg), ω =

∑g
i=1 ai∧bi, and let ω be the image of ω under the natural

map ∧2H → ∧2HG. Then there exists a unique map h which makes the following diagram commute.

(∧2H)/〈ω〉
f //

g

��

((∧2H)/〈ω〉)G

hvv
(∧2HG)/〈ω〉

Proof. The only thing we need to show is that ker f ⊂ ker g. The group ker f is generated by elements of
the form gα ∧ gβ − α ∧ β, for g ∈ G. Observe that elements of the form (g − 1)α ∧ β are contained in ker g.
Since gα ∧ gβ − α ∧ β = gα ∧ (g − 1)β + (g − 1)α ∧ β, we conclude our lemma. �
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