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Abstract. We give a new construction of p-adic heights on varieties over number fields using p-adic Arakelov theory. In

analogy with Zhang’s construction of real-valued heights in terms of adelic metrics, these heights are given in terms of p-adic

adelic metrics on line bundles. In particular, we describe a construction of canonical p-adic heights an abelian varieties and
we show that, for Jacobians, this recovers the height constructed by Coleman and Gross. Our main application is a new

and simplified approach to the Quadratic Chabauty method for the computation of rational points on certain curves over

the rationals, by pulling back the canonical height on the Jacobian with respect to a carefully chosen line bundle.
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1. Introduction

The explicit solution of polynomial equations in rationals or integers is one of the oldest problems in mathematics. Even
the simplest case, that of finding rational (or integral) points on a smooth projective algebraic curve X over the rationals,
does not have a satisfactory solution except in special cases. If the genus of X is at least 2, then one knows, thanks to
the celebrated theorem of Faltings [Fal83], that the set X(Q) of rational points is finite. But the theorem does not give
an effective way of bounding its size, let alone a computationally feasible way of finding it.

Chabauty’s theorem [Cha41], made effective by Coleman [Col85a], raised the hope of finding such a method using p-adic
methods. If the Mordell-Weil rank r = rk(J/Q) of the Jacobian J = JX of X is smaller than the genus g of X, it shows
that X(Q) ⊂ X(Qp) is contained in the zero set of a locally analytic function that can often be made explicit. Chabauty
proved that this zero set is finite. When p is a prime of good reduction, Coleman identified the relevant function as
an example of a p-adic line integral in the sense of [Col85b] and gave an effective bound on the number of points. The
method of Chabauty-Coleman can often be used to compute X(Q) in practice, by explicitly computing Coleman integrals.
See [MP12] for an exposition. One should note that all of the above and, at least in principle, all that follows, extends to
the study of K-rational points on a curve X/K, where K is a number field; see for instance [Sik13] and [BBBM21].

The revolutionary paper of Kim [Kim05] outlined a program to push the method of Chabauty and Coleman to the
case of curves which do not satisfy the Chabauty bound r < g. There it was demonstrated for the first time that one
may use the arithmetic theory of the fundamental group to identify more general Coleman integrals, namely, iterated
integrals, which would vanish on X(Q). Shortly afterwards, Kim conjectured [Kim09] that one could in fact recover X(Q)
completely using these methods. Verifying these conjectures is the main open problem of the subject. Nevertheless, a
more practical problem is to recover X(Q) using p-adic methods, and being slightly more restrictive and precise, trying to
find X(Q) inside the zero set of some iterated Coleman integral (for different approaches toward making the theorem of
Faltings effective that do not use Coleman integrals and that are indeed effective in some cases, see [LV20] and [Alp20]):
One method of this sort is Quadratic Chabauty [BBM16, BBM17, BBBM21, BD18, BD21, DF21, BDM+19, BBB+21,
BDM+21, AAB+21, EL21, ČLYX21].

Stated broadly (but still not covering the method of geometric Quadratic Chabauty [EL21, ČLYX21] on which we have
nothing to say in this work), Quadratic Chabauty can be phrased as an equality of functions on J(Q) of the form Q = H.
Here, Q is in fact a local function

Q : J(Qp)→ Qp .
In contrast, H, which usually comes from some sort of a p-adic height, is global in nature. Fixing an Abel-Jacobi
embedding ι : X → J over Q, one has a non-canonical decomposition

H ◦ ι =
∑
v<∞

λv ,

where v runs through all finite places of Q and λv is a function X(Qv) → Qp. To obtain the equality Q = H one first
proves that H is a quadratic function. One may then use this to write H in terms of a basis of such functions which can
be extended to J(Qp). For instance, one can write as a quadratic polynomial in the linear functionals on J(Q) coming
from Coleman integrals of holomorphic forms. By pulling back along ι, one obtains an equation, satisfied for x ∈ X(Q),

(1) Q ◦ ι(x)− λp(x) =
∑

q<∞, q 6=p

λq(x) .

Here, the left hand side is a locally analytic function X(Qp) → Qp with finite fibers. The remaining ingredient of
Quadratic Chabauty is that H needs to be constructed in such a way that the right hand side of the above equation takes
values in a finite computable set T . Typically, λq is going to be identically 0 for all primes of good reduction and for
primes of bad reduction it can take a finite set of values.

In the first instance of Quadratic Chabauty [BBM16, BBM17] the curve X was hyperelliptic of odd degree with r = g,
the embedding ι was done via the point at infinity and the function H was simply the p-adic height. However, while (1)
was satisfied for x ∈ X(Q), the method only worked for integral points (with respect to an odd degree equation with
coefficients in Z). The reason was that λq(x) can be expressed as an intersection multiplicity on a regular model of X,
and it was only possible to control this multiplicity for q-integral points x ∈ X(Qq).
The next substantial step was taken by Balakrishnan and Dogra in [BD18]. This important paper simultaneously related
the theory of [BBM16] with the arithmetic of the fundamental group of X, by constructing H using an extension of the
Nekovář height pairing [Nek93] on an appropriate nonabelian unipotent quotient of the fundamental group, and, more
importantly, showed how additional geometric data such as a non-trivial correspondence on X, could allow the method
to be extended to recover the rational points and not just the integral points. This extension of Quadratic Chabauty
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has been used since to find the rational points in a number of cases that resisted resolution using previous methods,
most importantly in the case of the cursed curve [BDM+19] related to Serre’s uniformity problem about the image of
Galois representations associated to elliptic curves. Other modular examples have been computed using this method
in [BBB+21, AAB+21, BDM+21]. It is important to note that the most non-trivial part of the extension to Quadratic
Chabauty in [BD18] and subsequent work such as [BD21] is the finiteness property. Indeed, given a correspondence on
X one can simply compose the p-adic height with that correspondence and obtain a new quadratic form, but in general,
there is no hope that this will satisfy the finiteness property when pulled back to X.

The paper [BD18] makes full use of both the theory of the fundamental group a la Kim and Nekovář’s cohomological
height pairing. In the end though, the resulting function H is fairly simple, and when pulled back to X can be expressed
as the height pairing applied to two divisors constructed out of a point x ∈ X(Q) and the correspondence in a very explicit
way. A natural problem that arises is thus to explain the results of [BD18] in a more direct way without the detour into
the theory of the fundamental group. This problem was the starting point of the present work. We provide a solution
based on p-adic Arakelov theory. One important consequence is that the function λp, which one needs to compute and
even locally expand as a power series in order the make the method work, is now (essentially) explicitly given as an
iterated Coleman integral. Another side effect is that the theory extends without any further work to the case of primes
p of bad reduction, using the theory of Vologodsky integration [Vol03] instead of Coleman integration.

To give our version of Quadratic Chabauty, we replace the use of the Nekovář construction of the height pairing by a
new p-adic analogue of the theory of adelic metrics and associated heights due to Zhang [Zha95] which we believe could
be of independent interest. Let us recall that an adelic metric on a line bundle L over a variety X over a number field
K assigns to each (finite or infinite) place v of K a real-valued norm ‖ · ‖v on the completion Lv, compatible with a set
of absolute values on K satisfying the product formula and subject to some natural conditions. These guarantee, among
other things, that the associated height

hL(x) =
∑
v

log ‖u‖v ∈ R ,

where u is any nonzero vector in the fiber of L above x, is a finite sum, hence well-defined. This height decomposes
non-canonically into local contributions by picking a nonzero section (which could in principle be only set theoretical) s
of L, giving

(2) hL(x) =
∑
v

log ‖s(x)‖v ∈ R .

Following Tate’s method for obtaining canonical heights on abelian varieties and similar methods for arithmetic dynamical
systems, Zhang showed how to obtain canonical adelic metrics for arithmetic dynamical systems. Suppose f : X → X is
an endomorphism of a variety X over a number field K, L is a line bundle on X and β : L⊗d → f∗L is an isomorphism,
with d > 1 (let us refer to the situation above as a dynamical situation). Then, for any place v of K, starting with any

norm ‖ · ‖v on Lv, repeatedly replacing ‖ · ‖v with (β−1f∗‖ · ‖v)
1
d and taking a limit, we obtain a canonical norm on Lv

for which β is an isometry, and these together give a canonical adelic metric. As an example, if X = (E,P∞) is an elliptic
curve given by a Weierstrass equation with point at infinity P∞, f = 2 is the multiplication by 2 map, L = O(2P∞) and
d = 4, one obtains an adelic metric on E whose associated height is easily recognized as the standard canonical height
on E. In many important cases, for instance when X is an abelian variety and f is multiplication by 2, the canonical
norm for a non-archimedean place v is given in the form ‖u‖v = cvL(u) where 1 > c ∈ R and vL is a Q-valuation on Lv
– a Q-valued function v on L∗v, the total space of Lv without the zero section. See Definition 2.1; valuations are called
log-metrics by Betts in [Bet17].

To construct a p-adic analogue of the theory above, we begin by replacing the system of absolute values satisfying the
product formula (more precisely, the log of this system) by an idelé class character

χ =
∑
v

χv : A×K/K
× → Qp .

The logs of the norms on a line bundle are replaced by certain functions logv : L∗v → Qp. In analogy with logs of norms,
these satisfy the relation logv(aw) = χv(a) + logv(w) for any a ∈ Kv and nontrivial w ∈ Lx. There is an obvious notion
of isometry in the theory; furthermore, the functions logv and the associated heights behave functorially.

As is often the case, it is easy to see that the limiting method used to construct canonical norms in the classical theory
will not work in the p-adic case and a different method has to be used. For places v which are not above p one can use
valuations, such as the ones provided by the classical theory as before, to obtain logv. Indeed, since for such a place the
character χv factors via ordv, it is easy to see that setting logv = χv(πv) · vL gives a function with the desired properties.

Even this method fails for places above the prime p. One of the key observations of the present work is that in this case
one may use p-adic Arakelov theory [Bes05] to obtain canonical log functions. More precisely, we use the theory of p-adic
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log functions and their curvature forms. For simplicity, let us restrict now to the case of the p-adic completion Qp of the
rationals. The theory isolates among all log functions a class of nice log functions which are integrals (in the sense of
Vologodsky) of a particularly simple form. To those log functions on a line bundle L over a variety X over Qp the theory
associates a curvature form α ∈ H1

dR(X) ⊗ Ω1(X) with the property that ∪α = ch1(L) ∈ H2
dR(X). Furthermore, the

condition about the cup product of α is necessary and sufficient for the construction of a log function on L with curvature
α. Unlike the classical archimedean theory, this log function is now no longer uniquely determined by α up to a constant,
but can be changed by adding the integral of a form ω ∈ Ω1(X). This suggests a way of finding a canonical log function
for the dynamical situations described above: First find a curvature form α cupping to ch1(L) and satisfying f∗α = d · α
(Note that this equality will hold after applying the cup product, so when the kernel of the cup product is not so big this
is quite reasonable – for instance, for abelian varieties). This makes the isomorphism β an isometry up to the integral of
a holomorphic form. Now adjust the log function by the integral of a holomorphic form to make β an isometry.

We consider this procedure in the case that X = A is an abelian variety and f is the multiplication by 2 map. We
prove that it gives log functions at places above p that produce heights which are quadratic for symmetric line bundles
and linear for antisymmetric line bundles. However, unlike the classical real-valued theory, the resulting log functions
are not unique. For a symmetric line bundle L there is a unique good log function for each curvature form cupping to
ch1(L) whereas for an antisymmetric line bundle, every log function with trivial curvature is good. To get canonical log

functions, and consequently canonical heights, we pick an appropriate log function on the Poincaré line bundle on A× Â.
This depends on a choice, well known in the theory of p-adic heights, of a complementary subspace to Ω1(Av) inside
H1

dR(Av) for every place v above p. From this we obtain canonical adelic metrics and canonical heights for antisymmetric

line bundles by restricting to the relevant fiber above Â and to symmetric line bundles by pulling back via an appropriate
map A→ A× Â.

Having the theory of p-adic heights in place, we have a simple description of Quadratic Chabauty. Let ι : X → J be an
embedding of the curve over Q into its Jacobian as before. Suppose that there exists a line bundle L on J such that
ι∗L is the trivial line bundle OX and such that L itself is not algebraically equivalent to 0. The function H is going
to be H = hL, the canonical height associated to the line bundle L. Thus, H is a quadratic function by our theory of
heights. On the other hand, the local components of the canonical height pull back to functions logv on OX , so we have
a decomposition on X(Q):

H ◦ ι =
∑
v

λv ,

where λv(x) = logv ◦1(x) and 1 is the canonical section of OX . Let T = {
∑
q 6=p lq · χq(q)}, where lq runs through the

values that the function λq takes on X(Qq). Our main result is the following:

Theorem 1.1. The function
F := hL ◦ ι− logv ◦1: X(Qp)→ Qp

is locally analytic and takes values on X(Q) in T . Moreover, T is finite and for every t ∈ T , there are only finitely many
x ∈ X(Qp) with F (x) = t.

See Theorem 7.3 for a slightly more precise statement. If we can make all quantities in Theorem 1.1 explicit, then we
obtain a finite subset of X(Qp) containing X(Q).

We note that the starting point for the geometric Chabauty method, a nontrivial class in

ker : NS(J)→ NS(X)

is equivalent to having a line bundle such as the one that we need in our method. Hence our requirements for Quadratic
Chabauty are precisely the same as in [BD18] and [EL21], but our approach is not restricted to good reduction at p.
Moreover, our auxiliary choices are the same as in [BD18].

One advantage of the approach to Quadratic Chabauty presented in this paper is that the function λp is just logp(1),
the log of the section 1 of the trivial bundle with respect to a log function with easily computed curvature form. As
explained before, this determines it up to the integral of an unknown holomorphic differential. An important observation
is that knowledge of this differential is not needed in order to make the method work. We explain how this function can
be explicitly written as a Coleman or Vologodsky iterated integral. In future work, we plan to implement this approach
in practice, using algorithms for single [BBK10, Bal15, BT20, KK20, Kay20] and double integrals [Bal13].

We show that, for q 6= p, the function λq factors through the reduction graph of X⊗Qq, by relating it to a Néron function
on J with respect to Lq. In particular, λq vanishes when X has potentially good reduction at q. It seems difficult to
compute the possible values of λq in general. This is analogous to the situation in [BD18, BDM+19]; an approach to this
problem was developed by Betts and Dogra [BD19], see also [BDM+21, Theorem 3.2]. However, these results do not give
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an algorithm to compute the local contributions away from p in the setting of [BD18]. In future work, we will explain
how Vologodsky integration may be used to construct canonical valuations at q 6= p and how to use this for explicit
computations of the possible values of λq.

It is a natural question how our p-adic height relates to other constructions in the literature. We show that on any abelian
variety, our canonical p-adic height fits into the general framework of p-adic heights pairing due to Mazur-Tate [MT83]. For
Jacobians, we show that we recover the pairing constructed by Coleman and Gross [CG89] and hence, via the comparison
results of [Bes04, Bes17], the pairing of Nekovář [Nek93] when the curve has semistable reduction at all places above p.

Finally, we discuss the relation between our construction and the one from [BD18]. Via the above-mentioned comparison
between our new p-adic height and the one of Nekovář, we show in Proposition 8.5 that the global function H is in fact
the same in both constructions up to a constant factor. In future work, we will give a precise comparison formula for the
local contributions. It would be interesting to compare our approach with the one of Edixhoven and Lido [EL21].

The outline of the paper is as follows. In Section 2 we reformulate the theory of (logarithms of) metrics over non-
archimedean local fields, especially of canonical metrics on abelian varieties, in terms of the notion of valuations. Section 3
summarizes the necessary p-adic Arakelov theory developed in [Bes05], with a focus on the case of curves. We then use
this theory to construct canonical log functions on abelian varieties over Qp in Section 4, the central section of the paper.
The global theory of adelic p-adic metrized line bundles and their associated heights is presented in Section 5. We then
give comparison results between our heights and those of Mazur-Tate and (in the case of Jacobians) Coleman-Gross in
Section 6. Section 7 contains our construction of Quadratic Chabauty; in particular, we prove Theorem 1.1. Finally, we
relate the global functions (coming from p-adic heights) used in our construction to those due to Balakrishnan and Dogra
factor in Section 8.
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Katz and Klaus Künnemann for helpful discussions. The first-named author was supported by grant no 912/18 from the
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to the university of Groningen.

1.1. Notation. We call a variety X over a field K nice if it is smooth, projective and geometrically integral. We write
x ∈ X as a shorthand for x ∈ X(K), where K is an algebraic closure of K. For a line bundle L/X, we let L× denote the
complement of the zero section in the total space of L. A rigidification of L is a choice of an element r ∈ LP (K) for some
P ∈ X(K). An isomorphism of rigidified line bundles on X is an isomorphism of the underlying bundles that maps the
rigidification on one side to the rigidification on the other under the induced map on total spaces. Tensor products and
pullbacks of rigidified line bundles can analogously be defined. (See [BG06, 9.5.6].)

We fix an embedding of Qp into a fixed algebraic closure Qp. Let ordp be the extension of the discrete valuation of Qp to

Qp.

2. Valuations and canonical local heights away from p

In this section, X/Qp denotes a smooth proper variety and L a line bundle on X.

Definition 2.1. A valuation on L is a function vL : L×(Qp)→ Qp such that for every fiber Lx we have

vL(λu) = ordp(λ) + vL(u)

for every nonzero u ∈ Lx, and every λ ∈ Qp. A Q-valuation on L is a valuation on L with values in Q.

Remark 2.2. When L and X are defined over a local field K ⊂ Qp, the function vL is invariant under the action of the
absolute Galois group of K, as we now explain. Pick a non-vanishing section u in Lx(K). Any point in Lx(F ) for some
extension field F of K is of the form λu for some λ ∈ F , and σ(λu) = σ(λ)u. Now

vL(σ(λu)) = ordp(σ(λ)) + vL(u) = ordp(λ) + vL(u) = vL(λu) .

Example 2.3. Let K be a local field with ring of integers R. Let L be a line bundle over a proper, flat reduced scheme X

over R. Let X be the generic fiber of X, and L := LK the corresponding line bundle over X. We now define a valuation
vL on L called the model valuation associated to X,L.

Let F be a finite extension of K, with ring of integers RF and P ∈ X(F ). Let s be an invertible meromorphic section of
L such that P /∈ div(s). By flatness, there is a unique extension sL of s to L, and a unique section P̄ : SpecRF → XRF
extending P . Note that H0(SpecRF , P̄

∗L) is a free rank 1 module over SpecRF , with a rational section P̄ ∗sL ∈
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H0(P̄ ∗L)⊗RF F ∼= F , so it makes sense to talk of the valuation of the element P̄ ∗sL measured with respect to the rank
1 free module P̄ ∗L. For u = s(P ), define

vL(u) := valuation of the rational section P̄ ∗sL of P̄ ∗L .

Then vL is a Q-valuation on L. See [BG06, Example 2.7.20] for more details.

More generally, we can obtain Q-valuations as follows.

Example 2.4. Let ‖ · ‖ be a locally bounded and continuous real-valued metric on L (see [BG06, §2.7]). Then logR ‖ · ‖
has the scaling property that we want from a valuation. So if

(3) v‖·‖(u)) := − logR ‖u‖ · logR(p)
−1

is Q-valued, then it defines a Q-valuation on L.

Definition 2.5. Let f : X ′ → X be a morphism of smooth proper varieties over Qp. Let vL be a valuation on L. Then
we define the pullback valuation f∗vL on L′ := f∗L as follows: For every x′ ∈ X ′, there is canonical identification of fibers
L′x′
∼= Lf(x′), which glue to give the map f̃ : L′× → L× in the commutative diagram below.

(4) L′×

��

f̃ // L×

��
X ′

f // X

Then

f∗vL := vL ◦ f̃ .

Definition 2.6. Let vL be a valuation on L and let M be another line bundle on X with a valuation vM .

(1) We define the sum valuation on L⊗M by

(vL + vM )(u⊗ w) := vL(u) + vM (w) ,

where u ∈ Lx and w ∈Mx are nonzero, and x ∈ X.
(2) We call an isomorphism g : L→M an isometry (with respect to vL and vM ) if

vM ◦ g = vL .

Remark 2.7. The class of Q-valuations is closed under taking sums and pullbacks.

Now let K/Qp be a finite extension and let A/K be an abelian variety.

Remark 2.8. Recall the notion of a rigidification of a line bundle from § 1.1. Suppose that L1 and L2 are isomorphic line
bundles on A with respective rigidifications r1 and r2. Then an isomorphism of the rigidified line bundles (L1, r1) and
(L2, r2) is an isomorphism ϕ : L1 → L2 such that ϕ(r1) = r2. This isomorphism exists and is unique. Henceforth, we
rigidify every line bundle over A by fixing a K-point in the fiber above 0, following [BG06, §9.5].

In particular, if (L, r) is a rigidified symmetric (respectively antisymmetric) line bundle on A, there is a unique isomor-
phism (15) (respectively (16)) of rigidified line bundles, and by [BG06, Theorem 9.5.4] there is a unique valuation such
that this isomorphism is an isometry. This valuation also has the following nice properties.

Proposition 2.9. ([BG06, Theorem 9.5.7], [Bet17, Lemma 3.1]) For every rigidified line bundle (L, r) on A , there is a
unique valuation vL on L with the following properties:

(a) vL only depends on (L, r) up to isomorphism of rigidified line bundles.
(b) vL⊗M = vL + vM .
(c) vOA(x, a) = ordp(a) if we choose the rigidification 1 of OA.
(d) vϕ∗L = ϕ∗vL for homomorphisms ϕ : A′ → A of abelian varieties over Qp.
(e) vL is locally constant on L×(K).
(f) vL is Q-valued and has bounded denominator on L×(K).
(g) vL(r) = 0.

We call vL the canonical valuation associated to (L, r). Betts calls the canonical valuation the Néron log-metric in [Bet17].
We have chosen different terminology to avoid confusion with the log functions discussed in the next few sections.
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Remark 2.10. It is easy to see that changing the rigidification r to a rigidification r′ changes the canonical valuation by
the constant ordp(λ), where r′ = λr. See [BG06, Remark 9.5.9].

Remark 2.11. In [BG06, §9.5], canonical valuations are constructed using a dynamical approach. See [GK17, Example 8.15]
for a construction of canonical valuations based on tropical geometry.

Remark 2.12. If A has good reduction, then canonical valuations are model valuations on the Néron model by [BG06,
Example 9.5.22]. In general, canonical valuations are not model valuations; they are not even induced by a formal model,
see [Gub03].

3. p-adic Arakelov theory

In this section we recall the parts of Vologodsky (and Coleman) integration theory and p-adic Arakelov theory that will
be used in later sections. The main result is Proposition 3.4, which associates a certain p-adic analytic function called
a log function to a line bundle equipped with a curvature form. Log functions (Definition 3.3) are the p-adic analytic
analogue of the valuations in Definition 2.1, and will be used in Section 5 to define the local contribution at p in the
decomposition of the global p-adic height function. Essentially everything we need can be found in Sections 2 and 4 of
[Bes05].

3.1. Vologodsky functions. Coleman’s integration theory [Col82, Col85b], originally developed as a theory of iterated
integration on certain overconvergent spaces with good reduction over closed subfields of Cp, was recast as a theory of
canonical paths in fundamental groupoids of the same spaces in [Bes02], and a theory of Coleman functions is derived
from the theory of paths. Shortly afterwards [Vol03], canonical paths for the fundamental groupoid of arbitrary smooth
varieties over finite extensions of Qp were constructed by Vologodsky, and the associated theory of Vologodsky functions,
which we now recall, was derived in [Bes05, Section 2]. Note that Vologodsky functions below are called (Vologodsky)
Coleman functions in [Bes05].

Let K be a finite extension of Qp, with a choice of embedding K → K into an algebraic closure. Let X be a smooth,
geometrically connected algebraic variety over K. We first summarize the results in [Bes05]. For this we fix a branch,
denoted log, of the p-adic logarithm. We insist that it takes K-values on K×.

Theorem 3.1. Let X and log be as above.

(a) For any locally free sheaf F on X there is a K-vector space FV (X) of Vologodsky functions with values in F, and in
particular Vologodsky functions and differential forms, OV (X) = Ω0

V (X) and ΩiV (X), and differentials d : ΩiV (X)→
Ωi+1
V (X), such that the sequence

(5) 0→ K → OV (X)
d−→ Ω1

V (X)
d−→ Ω2

V (X)

is exact. There are products ΩiV (X)⊗ ΩjV (X)→ Ωi+jV (X) compatible with the differentials.
(b) Let Ωi(X) be the space of global holomorphic i-forms on X, and let Ωiloc(X) ([Bes02, Definition 3]) be the space of

locally-analytic K valued i-forms on X. There are embeddings

(6) Ωi(X) ↪→ ΩiV (X) ↪→ Ωiloc(X)

compatible with differentials and products.
(c) Let z be a coordinate on A1. There exists a function log(z) ∈ OV (A1 − {0}) with the property that d log(z) = dz

z in

Ωi(X) ↪→ ΩiV (X) and that as a locally analytic function it is our chosen branch of the p-adic logarithm (with values

in K).
(d) Let f : X → Y be a map of varieties. Then there are pullback maps f∗ on spaces of Vologodsky functions and

differential forms which are compatible with the differentials, the product structure and with the embeddings (6).
(e) The induced presheaves U → ΩiV (U) on the Zariski site of X are sheaves.
(f) There is a submodule Ω1

V,1(X) ⊂ Ω1
V (X) of ”one time iterated forms” and a ”delbar” operator ∂̄ : Ω1

V,1(X) →
Ω1(X)⊗H1

dR(X) sitting in a short exact sequence

(7) 0→ Ω1(X)→ Ω1
V,1

∂̄−→ Ω1(X)⊗H1
dR(X) ,

such that when X is affine, the sequence is exact on the right and ∂̄(ω
∫
η) = ω ⊗ [η] for any two forms ω, η on X,

with [η] the cohomology class of η.
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Proof. This follows from Section 2 of [Bes05]. We point to the relevant references. The product structure and the
differential in (a) and the interpretation as locally analytic functions in (b) are all discussed at the bottom of page 321.
The exact diagram in (a) is Theorem 2.3. Functoriality as in (d) is discussed at the bottom of page 322. The fact that
the integral of dz

z is log(z), with the “universal” branch of the logarithm is proved in [Vol03, Theorem 1.16(5)]; we get

(c) by specializing to the given branch. Returning to [Bes05], the sheaf property (e) is Proposition 2.6 there, and the ∂̄
operator is recalled immediately following the proof of this proposition, with (f) being Proposition 2.7. �

Remark 3.2.

(i) The space OV (X) consists of locally analytic functions that locally look like iterated Vologodsky integrals. We will
discuss these integrals in more detail in the special case of curves below.

(ii) The space OV,1(X) consists of Vologodsky 1-forms that locally look like ω
∫
η for ω, η ∈ Ω1(X).

(iii) Compared to [Bes05], we have chosen to reverse the order of the terms Ω1(X)⊗H1
dR(X) in (f).

(iv) When X has good reduction, Vologodsky functions essentially coincide with Coleman functions and the resulting
theories of iterated integrals are the same in this case. (See [Bes05, Remark 2.13].)

(v) The space OV (Spec(K)) is identified with K by taking the value at the underlying physical point. In particular, by
functoriality, the values of Vologodsky functions on K-rational points of X are always in K.

3.2. Log functions for line bundles with curvature forms. Let L be a line bundle over X.

Definition 3.3. [Bes05, Definition 4.1] A log function on L is a function logL ∈ OV (L×) that satisfies the following two
conditions.

• For any x ∈ X, any nonzero u in the fiber Lx and a nonzero constant λ ∈ Qp one has logL(λu) = log(λ)+logL(u).

• d logL ∈ Ω1
V,1(L×).

The pair (L, logL) will be called a metrized line bundle on X, and logL a metric on L.

The second condition in the definition of log functions allows one to associate a certain curvature form to log functions,
analogous to the construction of metrized line bundles over R. The key result about p-adic log functions is [Bes05,
Proposition 4.4], which shows that log functions are determined (up to the addition of the integral of a holomorphic form)
by their corresponding curvature forms:

Proposition 3.4. Suppose that X is proper. Let π : L× → X be the projection.

(a) Suppose that L = (L, logL) is a metrized line bundle on X such that

ch1(L) ∈ im
(
∪ : Ω1(X)⊗H1

dR(X)→ H2
dR(X)

)
.

Then there exists a unique element, Curve(L) ∈ Ω1(X) ⊗H1
dR(X), such that π∗Curve(L) = ∂̄d logL. The element

Curve(L) is called the curvature form of the metrized line bundle L and it satisfies the relation ∪Curve(L) = ch1(L).
(b) Conversely, suppose that L is a line bundle on X and that α ∈ Ω1(X)⊗H1

dR(X) satisfies ∪α = ch1(L). Then there
exists a log function logL on L such that the curvature of (L, logL) is α.

If L = (L, logL), then we sometimes write Curve(logL) for Curve(L), and we call Curve(logL) the curvature form of logL.

Remark 3.5. If logL and log′L are two different log functions for the same curvature form, then

d(log′L− logL) ∈ π∗Ω1(X) ⊂ Ω1(L×) ⊂ Ω1
V,1(L×),

since ker(∂̄) = Ω1(L×) by Theorem 3.1 (a), and since the difference of any two log functions is constant along fibers of
π : L× → X by the first defining property of a log function. In the case of curves, this can also be seen from the explicit
construction of log functions we give in §3.3.3, where we solve for a meromorphic form with prescribed residues. The
space of such meromorphic forms, if non-empty, is a torsor for Ω1(X).

Remark 3.6. When X is an abelian variety, then ch1(L) ∈ im
(
∪ : Ω1(X)⊗H1

dR(X)→ H2
dR(X)

)
for every line bundle L.

One can explicitly write down curvature forms for the Poincaré bundle (see Proposition 6.11), and this induces curvature
forms, and hence log functions on every line bundle on X. (See Definition 4.31.) Moreover, the curvature form determines
the log function up to a linear form.

Example 3.7. [Trivial log function on the trivial bundle] For any variety X as above, we have the trivial log function

logtriv
OX

on OX with curvature 0 defined by

logtriv
OX

(x, u) := log(u),

where we have used the isomorphism O×X
∼= X ×Gm and the fixed branch of the p-adic logarithm.
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Definition 3.8.

(1) (Tensor products, [Bes05, Definition 4.3]) If (L, logL) and (M, logM ) are two metrized line bundles with corre-
sponding curvature forms α and β, then logL⊗ logM is a log function for L⊗M with curvature α+ β.

(2) (Roots of curvatures and log functions) Let L be a line bundle and let M := L⊗m for some nonzero integer m. If
logM is a log function for M with curvature form α, then we have an associated log function logL := 1

m logM for
L with curvature form α/m defined as follows. Let s ∈ L×. Then,

logL(s) =
1

m
logM (s) :=

1

m
logM (s⊗m).

(3) (Pullbacks, [Bes05, Proposition 4.6]) If (L, logL) is a metrized line bundle on a smooth, geometrically connected
variety Y/K with curvature α and f : X → Y is a morphism, then (f∗L, f∗(logL)) is a metrized line bundle on
X with curvature f∗α.

(4) (Isometries) Let (L, logL), (M, logM ) be metrized line bundles on X, with an isomorphism of line bundles L ∼= M .

Let f̃ : L× → M× be the induced morphism. We say that (L, logL) and (M, logM ) are isometric if f̃∗(logM ) =
logL.

3.3. The case of curves. We now provide more details on iterated integrals and log functions in the one-dimensional
case. This is all we need for our application to Quadratic Chabauty in Section 7. In particular, we sketch how to explicitly
construct a log function starting with a given curvature form.

3.3.1. Iterated integrals as Vologodsky functions. Suppose that X is one-dimensional. As there are no locally analytic
2-forms on X we have Ω2

loc(X) = 0 and therefore the differential d : OV (X)→ Ω1
V (X) is surjective. If ω1, . . . , ωk ∈ Ω1(X),

then we can iteratively define ∫ z

x

ω1 ◦ · · · ◦ ωk =

∫ z

x

(
ω1

∫ z

x

ω2 ◦ · · · ◦ ωk
)
,

where
∫ z
x

means the unique preimage under d which vanishes at x. We can view this iterated integral as the v0-component
of a solution of the differential equation

dvk = 0, dvk−1 = ωkvk, . . . , dv0 = ω1v1

with vk = 1, or, in a different language, as the v0-component of the horizontal section for the connection

(8) ∇(v) = dv − v ·A, with A =


0 ω1 0 · · · 0
0 0 ω2 · · · 0
...

...
. . .

0 0 0 · · · ωk
0 0 0 · · · 0

 .

3.3.2. Single and double integrals on curves. Let X/K be a nice curve. Let x ∈ X and let z be a coordinate in a Zariski
neighborhood of x. By abuse of notation, we also let log(z) denote the Vologodsky function defined on a punctured
neighborhood of x obtained by pulling back the function in Theorem 3.1 (c) by the coordinate z and using Theorem 3.1 (d).
We also suppress the choice of base point used to normalize iterated integrals below, and assume that both sides are
normalized correctly so that equality holds.

Lemma 3.9. Let η be a meromorphic form on X and let ω ∈ Ω1(X). Let cx := Resx(η). Then, there is an open
neighborhood Vx of x in the p-adic topology, and a Laurent series g centered at x such that, with respect to a local
parameter z at x on Vx, we have on Vx \ {x} the equality

∫ z
η = g(z) + cx log(z). Furthermore, if cx = 0, then Resx(gω)

is independent of the choice of g, and in this case,
∫ z

(ω
∫ z
η) = h(z) + Resx(gω) log(z) on Vx \ {x}.

Proof. For two parameters z and z′ as above the function log( zz′ ) is analytic near x, which shows that the validity of the
lemma is independent of the choice of z. Thus we may assume that z is an algebraic uniformizer at X, defined on a Zariski
open neighborhood Ux of x with no poles of η and no poles or zeros of z except possibly at x. Let η :=

∑
i≥ordx(η) aiz

idz

be the Laurent expansion of η on Vx centered at x, so that a−1 = cx. Let η′ :=
∑
i<−1 aiz

idz and η′′ := η − η′ − cx dzz .

Observe that η′ = df with f(z) :=
∑
i<−1

aiz
i+1

i+1 ∈ OV (Ux \ {x}), and so we have
∫
η′ = f (up to adjusting f by a

constant) on Vx \ {x}. Also, note that η′′ ∈ Ω1
V (Ux), so we have

∫
η′′ ∈ OV (Ux) and this has a power series expansion in

z on some analytic neighborhood Vx of x. Setting g :=
∫
η′′ + f , we see that on Vx \ {x}, the function g has a Laurent

series expansion g(z) and ∫ z

η =

∫ z

η′′ +

∫ z

η′ +

∫ z

cx
dz

z
= g(z) + cx log(z).
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Since dg = η − cx dzz , and any two choices of g satisfying this differ by a constant, Resx(gω) is independent of the choice

of g. When cx = 0, we have gω−Resx(gω)dzz ∈ Ω1
loc(Vx \ {x}), and by writing down an explicit Laurent series expansion

with no residue and arguing as before, we can find a Laurent series h centered at x such that on Vx \ {x} we have
dh = gω − Resx(gω)dzz , and hence∫ z

(ω

∫ z

η) =

∫ z

gω =

∫ z

dh+

∫ z

Resx(gω)
dz

z
= h(z) + Resx(gω) log(z). �

Remark 3.10. Note that locally around any point x ∈ X, iterated Coleman integrals are also defined and are polynomials
in log(z) with coefficients which are Laurent series [Bes05, Section 5]. One can alternatively prove the lemma by instead
using the local comparison between Vologodsky iterated integrals and Coleman iterated integrals. For the first case of
the lemma [BZ21] suffices, whereas for the second part one also needs [KL]

Example 3.11. Let X be a smooth, geometrically integral curve, not necessarily proper.

(a) For any f ∈ K(X), invertible on an open subset U , using Theorem 3.1 (a,c,d), it follows that there exists a function
log(f) ∈ OV (U), unique up to an additive constant, such that d log(f) = df/f and such that it is equal to log ◦f as
a locally analytic function.

(b) Let ω ∈ Ω1(X) and let η be a form of second kind on X, holomorphic on an open subset U of X. From Lemma 3.9,
it follows that there are well-defined functions f, g ∈ OV (U) such that dg = η, df = gω, such that g admits a
Laurent series expansion around points in X \ U , and such that f has an expansion as the sum of a Laurent series
and a constant multiple of log(z) around points in X \ U . Furthermore, in this case, Theorem 3.1 (f) implies
∂̄df = ω ⊗ [η] ∈ Ω1(U)⊗H1

dR(U).

3.3.3. Log functions for curves. Granting the existence of curvature forms for log functions, we first prove the following
lemma that will be useful in the sketch of construction of log functions on curves that follows.

Lemma 3.12. Assume that (L, logL) is a metrized line bundle on a nice curve X/K. Let s be a section of L, invertible
on a Zariski open subset U . Then, logL(s) ∈ OV (U) and the form d logL(s) ∈ Ω1

V (U) admits a locally meromorphic
extension to all points x ∈ X, with at worst simple poles and such that Resx(d logL(s)) = ordx(s) for every x ∈ X.

Proof. We have logL(s) ∈ OV (U) as the pullback of logL via s : U → L×. In particular, it is locally analytic on U in
consistence with the lemma. Let x ∈ X \U , and let z be a coordinate in a neighborhood of x. Let n = ordx(s). Then z−ns
is invertible in a Zariski open neighborhood Vx of x, so in turn logL(z−ns) ∈ OV (Vx) and γx := d logL(z−ns) ∈ Ω1

V (Vx).
Now by the second property of the log function, on Vx \ {x}, we have

(9) logL(s) = n log(z) + logL(z−ns),

and hence by definition of log(z),

d logL(s) = n
dz

z
+ γx.

Since the γx are locally analytic on Vx, the expression on the right hand side gives a locally meromorphic extension of
d logL(s) to points x ∈ X \ U , as a form with a simple pole of residue ordx(s). �

Sketch of construction of log functions for curves. We briefly sketch a construction of a log function with a given curva-
ture α when X is a curve, assuming the existence of log functions, since this is what we will need for the application
to Quadratic Chabauty. In the case of curves, the problem reduces to solving for a meromorphic differential γ with
prescribed polar parts, as we explain below. We refer the reader to the proof of [Bes05, Proposition 4.4] which shows that
log functions exist in any dimension using a careful argument using Cěch cocycles.

Let α =
∑
i ωi ⊗ [ηi] ∈ Ω1(X) ⊗ H1

dR(X) for some holomorphic forms ωi ∈ Ω1(X) and forms of second kind ηi with
corresponding cohomology classes [ηi] ∈ H1

dR(X), such that ∪α = ch1(L). We know by Proposition 3.4 that a log
function on L with curvature α exists and is unique up to the integral of a holomorphic form on X. Pick a nonzero
meromorphic section s of L, invertible on a Zariski open subset U of X as in Lemma 3.12. As we will see later, a log
function on L is completely determined by logL(s), so to construct one log function with curvature α (hence all), it suffices
to determine logL(s) up to the integral of a holomorphic form. We now restrict further to some U ′ ⊂ U where all the ηi
are holomorphic. Since ∂̄d logL(s) = α|U ′ , and we know ker(∂̄) from Theorem 3.1 (f). Example 3.11 (b) shows that on
X, we have

(10) d logL(s) =
∑

ωi

∫
ηi + γ,
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for some meromorphic form γ on X. Since logL(u) satisfies Lemma 3.12, the polar parts of γ at points in U are exactly
the negative of those of

∑
ωi
∫
ηi and the same is true at x ∈ X \U – except that there is a difference in the logarithmic

part, which is determined by the condition (that automatically holds also at x ∈ U),

Resx(γ) = ordx(s)− Resx

(∑
ωi

∫
ηi

)
.

Because γ is a meromorphic form and therefore satisfies the Residue Theorem, a necessary condition of the existence of
γ is that

∑
x∈X Resx(

∑
ωi
∫
ηi) =

∑
x∈X ordx(s), and by Riemann-Roch this is also a sufficient condition. It is easy to

see, independently of the general theory of log functions, that this condition is indeed satisfied because∑
x∈X

Resx(
∑

ωi

∫
ηi) = ∪α = ch1(L)

by assumption and we know that
∑
x∈X ordx(s) = ch1(L). As the conditions above completely determine the polar

parts of γ at every point, the degree of freedom of γ is exactly Ω1(X), and therefore determining γ with the right polar
conditions is equivalent to determining logL.

It remains to show how logL is determined by logL(s) ∈ OV (U). By the very definition of log functions (Definition 3.3)
it clearly determines logL above U so it suffices to extend logL to x ∈ X \ U . For such an x let z be a local coordinate
as in the proof of Lemma 3.12. Then (9) gives logL(z−ns) = logL(s) − n log(z). As logL satisfies the conditions of
Lemma 3.12, the function logL(s)− n log(z) is analytic in an analytic neighborhood of x. Hence it extends to x and we
can set logL(z−ns)(x) = (logL(s)−n log(z))(x). It is easy to see that this extension is independent of the choice of z. �

Example 3.13. [Log functions for tangent bundles on hyperelliptic curves, [BBM16]] Let X : y2 = f(x) be an odd degree
hyperelliptic curve In [BBM16], an explicit log function for the tangent bundle of X is constructed, extending the elliptic
case treated in [BB12]. This is then applied to express a suitably normalized local Coleman-Gross height pairing in terms
of double integrals, which is one of the main ingredients for the Quadratic Chabauty methods for integral points on
Xwhen f ∈ Z[x] is monic and rk(Jac(X)/Q) = g(X).

We recall the main features; for details see the proof of [BBM16, Theorem 2.2]. Let {ωi := xidx/2y}2g−1
i=0 be the standard

basis for H1
dR(X), and let {ωi}g−1

i=0 be a basis for a complementary subspace W to Ω1(X) ⊂ H1
dR(X) dual to the standard

basis {ωi}g−1
i=0 of Ω1(X) under the cup product pairing. We choose the curvature form α := −2

∑g−1
i=0 ωi ⊗ [ωi] for the

tangent bundle T. Fix the section θ of the tangent bundle dual to the holomorphic form ω0; this section has a pole of
order 2g − 2 at the unique point at ∞ and no other zeroes or poles. Since both d logT(θ) and the form −2

∑g−1
i=0 ωi

∫
ωi

have at worst simple poles at the unique point at ∞ and have the same residue at ∞, the meromorphic differential γ we
need to solve for is in fact holomorphic on X. It follows that for any ω ∈ Ω1(X),

logT(θ) = −2

g−1∑
i=0

ωi

∫
ωi +

∫
ω,

is a log function for T with curvature α, and that every log function for T with curvature α is of this form for some
ω ∈ Ω1(X).

4. Canonical log functions on line bundles on abelian varieties

Let A be an abelian variety over a p-adic field K. The goal of this section is a construction of canonical log functions
on A, similar to the canonical valuations in Proposition 2.9. Instead of the limit constructions typically applied in the
real-valued setting, we will use the curvature forms of metrized line bundles introduced in Proposition 3.4.

This idea is not new; for instance, Moret-Bailly has used curvature forms to characterize canonical real-valued metrics
on abelian varieties over C in [MB85]. However, in that setting the curvature form determines the metric up to a
constant, and the canonical metric is characterized by having a translation-invariant curvature form in H1,1(AC). In
our setting, curvature forms are valued in Ω1(A) ⊗ H1

dR(A) and hence automatically translation-invariant, for instance
by [Bar57]. Furthermore, the curvature form does not uniquely determine the log function: If L is a line bundle on A, and
α ∈ Ω1(A)⊗H1

dR(A) is such that ∪α = ch1(L), then there are several possible log function logL with Curve(logL) = α, one
for each holomorphic form on A. We will use this degree of freedom in Theorem 4.13 to show that when L is symmetric,
there exists a unique “good” log function (see Definition 4.9), on L with curvature α. This is not true in the antisymmetric
case, which is more involved, see Theorem 4.18. To define canonical good log functions, we show that there is a choice of
curvature form α for the Poincaré bundle on A so that the good log function with curvature α induces good log functions
on all symmetric and antisymmetric line bundles on A by pullback and restriction. The so obtained log functions will
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be our p-adic analytic analogue of the canonical valuation. It will also serve as the component at p of a canonical p-adic
adelic metrized line bundle when A is defined over a number field, see Section 5.

4.1. Geometry of abelian varieties. We recall the theory of line bundles on abelian varieties, the dual abelian variety
and the Poincaré line bundle. In this subsection A is an abelian variety over an arbitrary field K of characteristic 0. We
write s, d, πi for the addition and subtraction maps and the projections A×A→ A. Let L be a line bundle on A.

Definition 4.1. We call L symmetric (respectively antisymmetric) if there exists an isomorphism (−1)∗L ∼= L (respec-
tively (−1)∗L ∼= L−1.

Remark 4.2. Pullbacks of symmetric line bundles by morphisms of abelian varieties are also symmetric, and the tensor
product of two symmetric line bundles on an abelian variety is also symmetric.

The following results are well-known.

Proposition 4.3.

(a) If L is symmetric, then there is an isomorphism of line bundles on A×A
(11) s∗L⊗ d∗L ∼= (π∗1L)2 ⊗ (π∗2L)2 .

(b) The line bundle L is antisymmetric if and only if the cohomology class of L (in de Rham cohomology) is trivial. In
this case we have an isomorphism of line bundles on A×A:

(12) s∗L ∼= π∗1L⊗ π∗2L .

Proof. See [Lan83, Proposition 5.2.4] for (a) and [Lan83, Proposition 5.2.3] for Equation (12). It is clear that if a line
bundle is antisymmetric, then its cohomology class is 0 because −1 acts as 1 on H2

dR(A). Conversely, we may use
the Lefschetz principle to reduce to the case of abelian varieties over C and replace de Rham cohomology with Betti
cohomology. It then follows from the theorem of Appel-Humbert ([Mum08, Page 19]) that cohomologically trivial line
bundles correspond to elements of Hom(H1(A,Z),S1), were S1 is the unit circle inside C×, and these are all clearly
antisymmetric, which proves (b). �

Corollary 4.4. If L is symmetric (respectively antisymmetric), then for any morphisms f, g : X → A of K-varieties, one
has

(13) (f + g)∗L⊗ (f − g)∗L ∼= (f∗L)2 ⊗ (g∗L)2

(respectively

(14) (f + g)∗L ∼= f∗L⊗ g∗L) .

In particular, setting f = g = id or directly pulling back via ∆ : A→ A×A, we get isomorphisms

(15) [2]∗L ∼= L⊗4

when L is symmetric and

(16) [2]∗L ∼= L⊗2

when L is antisymmetric.

We now recall the theory of the dual abelian variety and the Poincaré line bundle. For any variety X, the Picard variety
of X represents the relative Picard functor

S 7→ PicX/S := Pic(X × S)/Pic(S)

where Pic is the usual Picard functor of isomorphism classes of line bundles and Pic(S) maps to Pic(X ×S) by pullback.
The connected component of the Picard variety classifies the subfunctor mapping S to the isomorphism classes of line
bundles which are fiber by fiber antisymmetric. In the special case of an abelian variety we denote this connected
component by Â - the dual abelian variety. Universality provides a line bundle P on A× Â whose restriction to A× {0}
is trivial. We normalize P up to isomorphism by insisting that its restriction to {0} × Â is also trivial.

Definition 4.5. We call P the Poincaré line bundle on A× Â.

Lemma 4.6. The Poincaré line bundle is symmetric.

Proof. See [BG06, Theorem 8.8.4]. �

Proposition 4.7. Let L/A be a line bundle.
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(a) The line bundle

φL(a) := t∗aL⊗ L−1

is antisymmetric.
(b) The map φL is induced from a morphism φL : A→ Â of abelian varieties.
(c) If L is ample, then φL is an isogeny.
(d) The bundle L is antisymmetric if and only if φL is trivial.

(e) If L is symmetric, then there exists an isomorphism L⊗2 ∼= (id×φL)∗P, with id×φL : A→ A× Â.

Proof. For the first two assertions, see [BG06, Theorem 8.5.1]. The third one is [BG06, Proposition 8.5.5] and for the

fourth see [BG06, Theorem 8.8.3]. We give a short proof of (e). Let L be symmetric and let id×φL : A × A → A × Â.
From the definition of φL, it follows that

(id×φL)∗P ∼= s∗L⊗ π∗1L−1 ⊗ π∗2L′

for some line bundle L′ on A. By restricting to {0}×A it is easy to see that L′ ∼= L−1. By symmetry of L the right hand
side in (e) becomes

∆∗(s∗L⊗ π∗1L−1 ⊗ π∗2L−1) ∼= [2]∗L⊗ L⊗−2 ∼= L⊗2 .

�

4.2. Good log functions on symmetric line bundles. For the remainder of this section we suppose that K is a p-adic
field and that A/K is an abelian variety. In the following, all line bundles on abelian varieties will be rigidified at 0. All
(iso)morphisms of line bundles will be viewed as (iso)morphisms of rigidified line bundles, although we will often not write
this explicitly, to simplify notation. Likewise, tensor products of line bundles will be tensor products of rigidified line
bundles. For a symmetric or antisymmetric line bundles, the rigidification fixes the choice of isomorphism (11), (12), (13),
(14), (15) and (16)

Definition 4.8. We say that a log function logL on a rigidified line bundle (L, r) on A/K is normalized if logL(r) = 0.

We first study the analogue of canonical valuations in the case of symmetric line bundles.

Definition 4.9. We say that a log function on a symmetric line bundle L/A is good if (11) is an isometry.

Remark 4.10. A good log function on a symmetric line bundle is normalized.

Lemma 4.11. Let L/A be a symmetric line bundle and let logL be a log function on L.

(a) There is a holomorphic form ω ∈ Ω1(A) such that the difference of the induced log function on L⊗4 and the pullback
of the log function on [2]∗L by the isomorphism (15) is the integral of 2ω.

(b) Assume further that the isomorphism [−1]∗(L) ∼= L is an isometry. Then for the holomorphic form ω ∈ Ω1(A) in
part (a), we also have that the difference of the induced log functions on the two sides of the isomorphism (11) is the
integral of π∗1ω + π∗2ω. Hence logL is good if and only if ω = 0.

Proof. Let α be the curvature of (L, logL). Since s∗ = π∗1 + π∗2 and d∗ = π∗1 − π∗2 as maps H1
dR(A) → H1

dR(A × A), a
direct calculation shows that s∗(ω′ ⊗ [η]) + d∗(ω′ ⊗ [η]) = 2π∗1(ω′ ⊗ [η]) + 2π∗2(ω′ ⊗ [η]) for all ω′ ⊗ [η] ∈ Ω1(A)⊗H1

dR(A)
and therefore

s∗α+ d∗α = 2π∗1α+ 2π∗2α.

Therefore the two sides of the isomorphism (11) have the same curvature. Further pullback by the diagonal map A→ A×A
shows that the two sides of the isomorphism (15) also have the same curvature.

(a) This follows from Remark 3.5.
(b) Since Ω1(A × A) = π∗1Ω1(A) ⊕ π∗2Ω2(A), by Remark 3.5, there is a holomorphic form π∗1ω1 + π∗2ω2 such that the

induced log functions differ by the integral of π∗1ω1 +π∗2ω2. Since L is symmetric, and we have [−1]∗(logL) = logL by
assumption, the induced log functions on both sides of (11) are invariant with respect to switching the two coordinates
on A. From this, it follows that their difference is also invariant with respect to switching the two coordinates, and
hence ω1 = ω2 = ω. The behavior with respect to (15) follows by further pullback along the diagonal A→ A×A. �

Lemma 4.12. A log function on a symmetric line bundle L/A is good if and only if (15) is an isometry. Furthermore,
for a good log function, the map (13) is also an isometry for any choices of morphisms f, g : X → A of K-varieties.
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Proof. Note that the isomorphism (11) with the induced log functions being an isometry implies that the isomorphism (15)
is also an isometry by further pullback along the diagonal. This proves one direction of the first statement.

Let logL be a log function such that the isomorphism (15) is an isometry. In order to show that logL is good, by
Lemma 4.11(b), it now suffices to show that the pullback of log[−1]∗L by the isomorphism ι : L → [−1]∗(L) is equal to

logL. It is easy to see that a log function on L with a given curvature for which (15) is an isometry is unique (see the proof
of Theorem 4.13). Therefore, it suffices to show that ι∗ log[−1]∗L also makes the unique isomorphism of rigidified bundles

[2]∗(L) ∼= L⊗4 in (15) an isometry. Since [−1]∗ commutes with [2]∗ and taking tensor powers, it follows that the induced
isomorphism κ : [2]∗([−1]∗L) ∼= ([−1]∗L)⊗4 obtained by further pullback of the isometry [2]∗(L) ∼= L⊗4 (with log functions
on the two sides induced from logL) by [−1] is also an isometry. Consider the isomorphism ι⊗−4 ·κ · [2]∗(ι) : [2]∗(L) ∼= L⊗4.
This composition is an isometry with the log functions on the two sides induced from the log function ι∗ log[−1]∗L on L
by taking pullbacks and tensor powers.

For the good log function, the map (13) is also an isometry for any choices of morphisms f, g : X → A, since isometries
are preserved by further pullbacks. �

Theorem 4.13. Let L be a symmetric line bundle on A and let α ∈ Ω1(A)⊗H1
dR(A) such that ∪α = ch1(L). Then there

exists a unique good log function logL such that Curve(logL) = α. The good log function satisfies [−1]∗ logL = logL.

Proof. Pick some log function log′L on L with curvature form α. We will also let log′[2]∗L denote the induced log function on

L⊗4 under the unique isomorphism of rigidified bundles [2]∗(L) ∼= L⊗4 in (15). By Lemma 4.11(a), there is an ω ∈ Ω1(A)
such that

(17) log′L⊗4 − log′[2]∗L = 2

∫
ω.

Let logL := log′L−
∫
ω. A direct computation shows that the log functions on [2]∗(L) and L⊗4 induced by logL are

log′[2]∗L−2
∫
ω and log′L⊗4 −4

∫
ω, respectively. Combined with Equation (17), this shows that the isomorphism (15) is

an isometry with the induced log functions from logL. Furthermore, by Remark 3.5, it follows that logL is the only log
function with this property. We are now done by Lemma 4.12. �

We now prove a result that can be used to show that certain isomorphisms between symmetric line bundles are isometries.

Lemma 4.14. Let L/A be a symmetric line bundle and let logL be a good log function with respect to the chosen
rigidification r.

(a) Let f : A′ → A be a homomorphism of abelian varieties. Then f∗ logL is good.
(b) Let M/A be another symmetric line bundle with a good log function logM . Then logL + logM is good.
(c) Let ϕ : L1 → L2 be an isomorphism between line bundles on abelian variety A′/K such that L1 and L2 are obtained

from L by pullbacks and tensor products as in (a) and (b). For i = 1, 2, let logi be the log function on Li induced by
logL and let αi = Curve(logi). Then ϕ is an isometry if and only if α1 = α2.

Proof. As f is a homomorphism, pullback by f followed by pullback by s, d, π1, π2 is the same as first pulling back by
s, d, π1, π2 followed by pullback by f × f . Using Remark 4.2, the first two assertions are immediate. For i = 1, 2, there is
a unique good log function on Li with curvature α1. By (a) and (b), log1 and log2 are good, so (c) follows. �

4.3. Good and canonical log functions on antisymmetric line bundles.

Definition 4.15. We say that a log function on an antisymmetric line bundle L is good if (12) is an isometry.

As in the symmstric case, the notion of goodness depends on the choice of a rigidification of L, used to fix the isomor-
phism (12).

Remark 4.16. A good log function on an antisymmetric line bundle is normalized.

Definition 4.17. We call a metrized line bundle flat if the corresponding curvature form is trivial.

As the cohomology class ch1(L) of any antisymmetric line bundle L/A is trivial, any α ∈ Ω1(A)⊗H1
dR(A) cupping to 0

is the curvature form for some log function on L.

Theorem 4.18. A log function logL on an antisymmetric line bundle L is good if and only if (L, logL) is flat and
normalized.
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Proof. By Remark 4.16, a good log function is normalized. If (12) is an isometry, so is (16) by further pullback along the
diagonal map. We show that if (16) is an isometry with the induced log functions, then α := Curve(logL) = 0. Since

s∗(ω′ ⊗ [η]) = (π∗1 + π∗2)(ω′ ⊗ [η]) = π∗1(ω′ ⊗ [η]) + π∗2(ω′ ⊗ [η]) + π∗1ω
′ ⊗ π∗2 [η] + π∗2ω

′ ⊗ π∗1 [η],

for all ω′ ⊗ [η] ∈ Ω1(A) ⊗H1
dR(p), it follows that if ∆: A → A × A is the diagonal map, then [2]∗α = ∆∗s∗α = 4α. We

also have α⊗2 = 2α. Since the log functions and hence the curvatures of the two sides of (16) agree by assumption, it
follows that 4α = 2α and hence α = 0.

It now suffices to show that any log function on an antisymmetric line bundle with curvature 0 is good. To prove this,
we will construct an explicit good, in particular, normalized, log function logL with curvature 0 in Proposition 4.25.
By Remark 3.5, any other log function with curvature 0 is of the form log′L := logL +

∫
ω for some holomorphic form

ω ∈ Ω1(A), where
∫
ω is normalized to have the value 0 at 0. Once again, since s∗ω = π∗1ω+π∗2ω, replacing logL by log′L,

by Theorem 3.1(d), adds π∗1
∫
ω + π∗2

∫
ω to the induced log functions on both sides of (12), and therefore log′L is also

good. �

Remark 4.19. Alternatively, one can construct a good log function on L by writing L as t∗aM ⊗M−1 for some symmetric
ample line bundle M and a ∈ A and showing that, if we start with any good log function on M , the induced log function
on t∗aM ⊗M−1 is good.

Corollary 4.20. Let L be an antisymmetric line bundle. A log function on L is good if and only if (16) is an isometry.
Furthermore, for a good log function on L, the map (14) is also an isometry for any choices of morphisms f, g : X → A
of K-varieties.

Proof. The first statement follows from Theorem 4.18. Isometries are preserved by pullback. �

Remark 4.21. Observe that for symmetric line bundles, there is a unique good log function for any curvature form for
L, whereas for antisymmetric line bundles, good log functions exist only if the curvature is 0. Moreover, in this case,
every normalized log function with curvature 0 is automatically good, so good log functions are far from unique for
antisymmetric line bundles.

We can metrize an antisymmetric line bundle L/A by restricting a log function on the Poincaré bundle P on A× Â to the
fiber corresponding to L. Since P is symmetric, we can fix a curvature form for P and obtain, by Theorem 4.13, a unique
associated good log function logP. We will show that for certain curvature forms on P, this yields a good log function
on L. This construction completes the proof of Theorem 4.18 and simultaneously attaches a unique good log function to
every antisymmetric line bundle.

For notational convenience we denote A by A1 and Â by A2 and we write πi for the projection A1 ×A2 → Ai. There are
direct sum decompositions

Ω1(A× Â) = π∗1Ω1(A)⊕ π∗2Ω1(Â) , H1
dR(A× Â) = π∗1H

1
dR(A)⊕ π∗2H1

dR(Â)

resulting in a direct sum decomposition

Ω1(A× Â)⊗H1
dR(A× Â) = ⊕i,j=1,2Hij , Hij = π∗i Ω1(Ai)⊗ π∗jH1

dR(Aj) ∼= Ω1(Ai)⊗H1
dR(Aj).

For an element α ∈ Ω1(A× Â)⊗H1
dR(A× Â) we let αij be its component in Hij .

Definition 4.22. An element α ∈ Ω1(A × Â) ⊗ H1
dR(A × Â) is called a purely mixed curvature form for the Poincaré

bundle P if ∪α = ch1(P) and α00 = α11 = 0.

We will show in Section 6.2 that purely mixed curvature forms for the Poincaré bundle exist. In Proposition 6.11, we
prove that purely mixed curvature forms for P are in one-to-one correspondence with complementary subspaces for the
inclusion Ω1(A) ↪→ H1

dR(A). First we give an alternative characterization of the good log function on P with a given
purely mixed curvature form.

Remark 4.23. From now on, we fix a rigidification rP of P at (0, 0). This choice induces trivializations P{0A}×Â
∼= OÂ

and PA×{0Â}
∼= OA by requiring that rP corresponds to 1(0A) (respectively 1(0Â)), where 1 is the canonical section of

OA (respectively of OÂ). In particular, for â ∈ Â, this choice induces a rigidification râ on the antisymmetric line bundle
PA×{â} on A, corresponding to 1(â), and similarly for a ∈ A.

Proposition 4.24. Let α be a purely mixed curvature form for P.

(a) There is a unique log function logP on P with curvature α which restricts to the trivial log function on A× {0} and

on {0} × Â with respect to the trivializations from Remark 4.23.
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(b) The log function logP from part (a) is the good log function with curvature α with respect to the rigidification rP from
Remark 4.23.

Proof.

(a) Since α is purely mixed, the restriction of α to any horizontal or vertical fiber is trivial. Thus, by Theorem 4.18, any
log function for α induces flat log functions on each antisymmetric line bundle on A and by duality a flat log function
on each antisymmetric line bundle on Â. In particular, the restriction of such a log function to A× {0} and {0} × Â
is trivial up to an integral of a holomorphic form. By Remark 3.5, the curvature determines the log function up to
the integral of a holomorphic one form ω = π∗1ω1 + π∗2ω2 ∈ Ω1(A× Â), for some ω1 ∈ Ω1(A), ω2 ∈ Ω1(Â). Changing
the log function by the integral of ω changes the log function restricted to A × {0} by

∫
ω1 and the restriction to

{0} × Â by
∫
ω2. From this (a) follows easily.

(b) By Corollary 4.12 it is enough to prove that (15) is an isometry with the log functions on the two sides induced from
logP from part (a). In other words, it is enough to show that the log function log′P on P given by 1/4 ([2]∗ logP) (see
Definition 3.8 (2)) equals logP. For this, first observe that log′P and log|p have the same curvature, since [2]∗ acts as

multiplication by 2 on H1
dR(A) and Ω1(A). Since log′P and logP both restrict to the trivial log function on {0} × Â

and A× {0}, we are done by part (a). �

Proposition 4.25. Let α be a purely mixed curvature form for P and let â ∈ Â. Then the log function induced by logP

on P|A×{â} is good for the rigidification râ from Remark 4.23.

Proof. Consider the maps

s̃ = s× id, π̃1 = π1 × id, π̃2 = π2 × id : A×A× Â→ A× Â.

We claim that there exists an isomorphism

(18) s̃∗P ∼= π̃∗1P⊗ π̃∗2P .

Indeed, since the restriction of P to any fiber is antisymmetric, by (12) for every â ∈ Â we have

(19) s∗(P|A×{â}) ∼= π∗1(P|A×{â})⊗ π∗2(P|A×{â}) ,
and hence s̃∗P|A×A×{â} ∼= π̃∗1PA×A×{â} ⊗ π̃∗2PA×A×{â}. By the seesaw principle, the two sides of (18) are isomorphic up

to the pullback of a line bundle L on Â. But then restricting to {0} × {0} × Â we immediately see that L ∼= OÂ, which
implies (18). We normalize the isomorphism in (18) by requiring that it is an isomorphism of rigidified line bundles, with
rigidifications induced by Remark 4.23.

Next we claim that s̃∗ logP and π̃∗1 logP⊗π̃∗2 logP have the same curvature. Because α is purely mixed, it suffices to show

that s̃∗(ω⊗ [η]) = π̃∗1(ω⊗ [η])⊗ π̃∗2(ω⊗ [η]) for ω ∈ Ω1(A) and [η] ∈ H1
dR(Â) and for ω ∈ Ω1(Â) and [η] ∈ H1

dR(A). Indeed,
since s∗ = π∗1 + π∗2 on Ω1(A)

s̃∗(ω ⊗ [η]) = (π∗1ω + π∗2ω)⊗ [η] = π̃∗1(ω ⊗ [η]) + π̃∗2(ω ⊗ [η]).

But since s∗ = π∗1 + π∗2 on H1
dR(A), we also get the analogous statement for ω ∈ Ω1(Â) and [η] ∈ H1

dR(A). Therefore, by
Lemma 4.6 and Lemma 4.14, we have

s̃∗ logP = π̃∗1 logP +π̃∗2 logP ,

which shows that the isomorphism (18) is an isometry. Finally, it is not hard to check that the restricted isomorphism (19)
sends the pullback of râ along s to the sum of the pullbacks of râ along π1 and π2. The claim follows. �

If α is a purely mixed curvature form for P and if L/A is an antisymmetric line bundle with rigidification r, then there
is a unique isomorphism ψL,r : (L, r) ∼= (P|A×{â}, râ), where â is the class of L.

Definition 4.26. Let L/A be an antisymmetric line bundle with rigidification r. The canonical log function on L (with
respect to α) is the log function obtained by pulling back the log function from Proposition 4.25 by ψL,r.

We immediately deduce:

Corollary 4.27. Let logL be the canonical log function on an antisymmetric rigidified line bundle (L, r). Then logL is
good. In particular, it is normalized.

We now show that the canonical log function on an antisymmetric line bundle has some desirable properties. First, by
dualizing the objects in the proof of Proposition 4.25, we get the following result.
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Proposition 4.28. The tensor product of the canonical log functions on two antisymmetric line bundles is canonical.

Proof. Let â1, â2 ∈ Â. If we swap the roles of A and Â in the proof of Proposition 4.25, we find that

(20) s̃∗P|{â1}×{â2}×A ∼= π̃∗1P|{â1}×{â2}×A ⊗ π̃
∗
2P|{â1}×{â2}×A .

is an isometry for the log functions induced by the good log function on P with respect to α, where

s̃ = s× id, π̃1 = π1 × id, π̃2 = π2 × id : Â× Â×A→ Â×A.
By duality, the result follows. �

To understand the behavior of canonical log functions on antisymmetric line bundles under translations, we first prove a
preliminary result.

Lemma 4.29. Let (L, logL), (M, logM ) be metrized line bundles on A× Â, with an isomorphism of line bundles L ∼= M .

Suppose Curve(logL) = Curve(logM ), and that the restrictions of logL and logM to A × {0} and {0} × Â are isometric.
Then the given isomorphism is an isometry.

Proof. Write logM , by abuse of notation, for the pulled back log function on L By Remark 3.5, the curvature determines
the log function up to the integral of a holomorphic one form ω ∈ Ω1(A× Â), so we have

logL = logM +π∗1

∫
ω1 + π∗2

∫
ω2

for some ω1 ∈ Ω1(A), ω2 ∈ Ω1(Â). Restricting both sides of the equality above to A × {0} and {0} × Â and using our
assumption that the restrictions of the log functions to the fibers are isometric, it follows that

∫
ω1 =

∫
ω2 = 0, and

therefore logL = logM . �

Proposition 4.30. Let L/A be an antisymmetric line bundle with canonical log function logL and let a ∈ A. Then, up
to an additive constant, t∗a logL is the canonical log function on t∗aL.

Proof. Let τ = t(a,0) : A× Â→ A× Â. Then, for â ∈ Â, since P|A×{â} is translation-invariant, we have

τ∗P|A×{â} ∼= P|A×{â} ∼= (P⊗ π∗2Ma)|A×{â},

where Ma is the line bundle on Â whose class is a under duality. Moreover, the restriction of τ∗P to {0}× Â is isomorphic
to π∗2Ma, so τ∗P|{0}×Â ∼= (P⊗ π∗2Ma)|{0}×Â, which implies

(21) τ∗P ∼= P⊗ π∗2Ma .

Let logP be the good log function on P (with respect to a purely mixed curvature form α and the rigidification rP, as
usual) and let logMa

be the canonical log function on Ma induced by logP via restriction. We want to use Lemma 4.29
to show that (21) is an isometry for these log functions. First note that Curve(logP) is translation-invariant and that

π∗2 logMa
has trivial curvature. Furthermore, (21) is tautologically an isometry when restricted to {0} × Â. It is also an

isometry when restricted to A× {0}, by Remark 4.24 and since the trivial bundle equipped with the trivial log function
is translation-invariant. Hence (21) is indeed an isometry as claimed.

Finally, let â = [L] ∈ Pic0(A). Restricting the isometry (21) to the fiber A×{â}, the result follows, since π∗2 logMa
|A×{â}

is constant. �

4.4. Canonical log functions on arbitrary line bundles. Fix a purely mixed curvature form α for P. Let logP be
the good log function with curvature α from Proposition 4.24. Now we systematically fix canonical (with respect to α)
log functions on all line bundles on A using logP. We have already defined canonical log functions for antisymmetric line
bundles in Definition 4.26.

For a line bundle L/A, we set L+ := L⊗ [−1]∗L and L− := L⊗ ([−1]∗L)−1, so that L+ is symmetric, L− is antisymmetric
and we have

(22) L⊗2 ∼= L+ ⊗ L−.
Recall the homomorphism φL from Proposition 4.7.

Definition 4.31. Let L be a line bundle on A with rigidification r. The canonical log function logL for L (with respect
to α and r) is defined as follows:

(a) When L is antisymmetric, then logL is defined in Definition 4.26.
(b) When L is symmetric, then logL is the good log function with curvature 1

2 (id×φL)∗α (with respect to r).
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(c) In general, we define logL = 1
2 (logL+ + logL−) using the canonical decomposition (22) and Definition 3.8 (2), where

the log functions on L+ and L− are the canonical log functions with respect to the rigidifications r+ (respectively
r−) on L+ (respectively L−) induced by r.

Remark 4.32. Note that the definition in part (c) above is compatible with parts (a) and (b) by Proposition 4.28 and
Proposition 4.14 (b), since L+ ∼= L⊗2 and L− ∼= OA for L symmetric, and analogously L+ ∼= OA and L− = L⊗2 for L
antisymmetric.

Letting â = [L−] ∈ Â, we get the following formula for the canonical log function for (L, r) with respect to α as a sum of
(scaled) pullbacks:

(23) logL =
1

2
ψ∗L+,r+(id×φL)∗ logP +

1

2
ψ∗L−,r− logP |A×{â} ,

where ψL+,r+ : L+ ∼= L+ is the unique isomorphism sending r+ to (id×φL)∗rP.

Remark 4.33. By construction and by Remarks 4.10 and 4.16, the canonical log function is normalized. In analogy with
Remark 2.10, changing the rigidification r to a rigidification r′ = λr changes the canonical log function by log λ.

5. p-adic adelic valuations and global p-adic heights

Shou-Wu Zhang has introduced a theory of real-valued adelic metrics on line bundles on varieties over number fields
in [Zha95]. Such an adelic metric is a family of continuous real-valued metrics, one for every place of the number field.
Using the previous two sections, we now develop a p-adic version of this theory, a theory of adelic line bundles on nice
varieties over number fields with values in Qp. Via a choice of an idelé class character, we can use this to develop a fairly
general theory of p-adic heights. We then specialize to the case of abelian varieties and canonical p-adic heights, similar
to Zhang’s construction of Néron-Tate heights using adelic metrics (see also [CL11] and [BG06, §9.5] for expositions).

Let K be a number field. For a place v of K, we denote by Kv the completion of K at v with ring of integers Ov and
uniformizer πv We also fix an algebraic closure K̄v of Kv.

Let p be a prime number and let

χ =
∑
v

χv : A×K/K
× → Qp .

be a continuous idelé class character. This means that χ is a continuous homomorphism such that

• we have χq(O×q ) = 0 for q - p;
• for every p | p, there is a Qp-linear trace map tp such that we can decompose

(24) O×p
χp //

logp

  

Qp.

Kp

tp
>>

One can think of χ as a “global log”. We shall assume that χ is ramified at all p | p, so that we can extend (24) to Kp,
leading to a factorization

(25) χp = tp ◦ logp ,

valid on K×p . Then logp is a branch of the logarithm K×p → Kp as in Section 3 and 4.

Suppose that X is a nice variety over K. If v is a finite place of X, then we write Xv for the base change of X to Kv and
X̄v for the base change to K̄v. Similarly, for a line bundle L of X, we write Lv and L̄v.

5.1. p-adic adelic metrics and heights.

Definition 5.1. Let L be a line bundle on X/K. A p-adic adelic metric on L consists of the following data:

• for every place p | p, a log function logL,p on Lp (see Definition 3.3),
• for every finite place q - p, a Q-valuation vL,q on Lq (see Definition 2.1),

satisfying the following compatibility condition: There exists an integral model X/OK of X and an extension L of L to
X such that for all but finitely many q - p, the valuation vL,q is equal to the model valuation vL⊗Oq

(see Example 2.3).

We call L := (L, (logL,p){p|p}, (vL,q){q-p}) a p-adic adelically metrized line bundle on X.
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There are obvious notions of tensor products and pullbacks of adelic metrics and adelically metrized line bundles via the
corresponding notions in Sections 2 and 3.

Definition 5.2. Let L = (L, (logL,p){p|p}, (vL,q){q-p}) be an adelically metrized line bundle on X/K such that for every
place p | p, the branch of the logarithm in Definition 3.3 is the branch logp induced by χp as in (25). The p-adic height

associated with L and χ is the function hL := hL,χ associating with a point x ∈ X(K) the value

hL(x) =
∑
p|p

tp(logL,p(u)) +
∑
q-p

vL,q(u)χq(πq) ∈ Qp ,

where u ∈ Lx(K) \ {0}.

Note that logL,p(u) ∈ Kp by (v) of Remark 3.2, so that the formula makes sense. The height is independent of the choice
of u by the fact that χ is an idelé class character.

Remark 5.3. It would be interesting to generalize our construction of the p-adic height from points to subvarieties of X.

5.2. Canonical p-adic heights on abelian varieties. Let A/K be an abelian variety. As in previous sections, we
equip all line bundles L/A with a rigidification r at 0, inducing compatible rigidifications at 0 on all Lv.

Definition 5.4. Let L/A be a line bundle. An adelic metric on L is called good if the log function at p is good for all
p | p and if the valuations at all q - p are canonical.

Proposition 5.5. Let L be a line bundle on A endowed with a good adelic metric. Then the p-adic height hL is a
quadratic function on A(K). It is a quadratic (respectively linear) form if L is symmetric (respectively antisymmetric).

Proof. This follows at once from the definitions. �

Recall that for all q - p, there is a unique good Q-valuation on the line bundle Lq with respect to a rigidification r. To
define canonical adelic metrics, we fix a purely mixed curvature form αp of the Poincaré bundle Pp := P⊗Kp for all p | p.

Definition 5.6. Let L/A be a line bundle. For each q - p, let vL,q be the canonical valuation and for each p | p let logL,p
be the canonical log function. Then we call ((logL,p){p|p}, (vL,q){q-p})) the canonical adelic metric on L.

Lemma 5.7. The canonical adelic metric is good.

Proof. This follows from Definition 4.31 and Corollary 4.27. �

Let L := (L, (logL,p){p|p}, (vL,q){q-p})) be a canonical adelic metrized line bundle. We denote the height function hL = hL,χ
by ĥL. Then, as a special case, we obtain the canonical p-adic height pairing

(26) ĥ := ĥP : A(K)× Â(K)→ Qp
on A(K)× Â(K). It depends both on α and on χ, but not on the rigidification of P by Remarks 2.10 and 4.33.

Corollary 5.8. The canonical height pairing is bilinear.

Proof. This follows at once from Proposition 5.5. Alternatively, note that the adelic metric on P restricts over {a} × Â
and over A × {a′} to good adelic metrics on antisymmetric line bundles by Proposition 4.24. The induced heights are
thus linear by Proposition 5.5, which implies bilinearity. �

Corollary 5.9. Let L be a line bundle on A and let â = [L−] ∈ Â be the point corresponding to L− = L⊗ ([−1]∗L)−1.

(a) For all a ∈ A(K), we have

ĥL(a) =
1

2
ĥ(a, φL(a) + â)

(b) The bilinear form associated with ĥL is

(a, b) 7→ 1

4

(
ĥ(a, φL(b)) + ĥ(b, φL(a))

)
.

Proof. More precisely, the local contributions at all places to both sides in (a) are equal. For v - p, this follows at once
from Proposition 2.9. For p | p, it is implied by the construction of the canonical log function and by (23). Part (b) is
obvious. �
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6. Comparison with Mazur-Tate and Coleman-Gross heights

In this section, we first show that the canonical heights constructed in Section 5 induce height pairings in the sense of
Mazur and Tate [MT83]. We then restrict to the Jacobian of the curve. In this case, the canonical height pairing with
respect to a theta divisor is the same as the height pairing due to Coleman and Gross [CG89], with appropriate choices.
By [Bes04, Bes17], this pairing is the same as the geometric pairing constructed by Nekovář [Nek93], if the curve has
semistable reduction at all places above p. In future work we will prove a more general result dealing with arbitrary
abelian varieties and the Zarhin height pairing [Zar90].

In this section, K denotes a number field and A/K an abelian variety. We choose a continuous idelé class character
χ : AK/K∗ → Qp. For p | p, let logp be the branch of the logarithm induced by χp as in (24).

6.1. Mazur-Tate. In [MT83], Mazur and Tate construct global height pairings on A using biextensions of A and Â by
Gm. These global pairings are sums of local pairings defined in [MT83, Section 2]. For all non-archimedean places v of
K we now define local pairings 〈·, ·〉v via canonical valuations. We then show that they satisfy the conditions of [MT83,
§2.2]. In other words, the pairing at a place v is induced from a χv-splitting in the sense of [MT83, Section 1].

6.1.1. Local height pairings away from p. First let q be a non-archimedean place of K such that q - p. Then we define a
pairing between zero cycles a =

∑
x nxx ∈ Z0

0 (AKq
) of degree 0 and a divisors D ∈ Div(AKq

) with disjoint support as
follows: Let s be a meromorphic section of a line bundle L on AKq

such that D = div(s) and let r be a rigidification of
L. Let vL,q be the canonical valuation on L (with respect to r). We set

(27) 〈a, D〉q :=
∑
x

nxvL,q(s(x))χq(πq),

where πq is a uniformizer at q. Since deg(a) = 0, this is independent of the choice of r.

Lemma 6.1. The pairing (27) satisfies the following properties:

(a) 〈·, ·〉q is biadditive,
(b) 〈·, ·〉q is translation-invariant,
(c) if D = div(f), then 〈a,div(f)〉q = χq(f(a))

Proof. The pairing (27) is the same, up to a constant, as the real-valued pairing defined by

(28) 〈a, D〉q,R :=
∑
x

nxvL,q(s(x)) logR Nm(q).

The pairing (28) satisfies (a)–(c) by the proof of [BG06, Theorem 9.5.11]. �

Remark 6.2. The pairing (28) is the classical local Néron symbol at q, see [BG06, Theorem 9.5.11]. It is characterized
uniquely by (a)–(c) and by local boundedness of the function x 7→ 〈D, (x) − (b)〉q for every fixed b ∈ A(Kq) \ supp(D).
By [MT83, Proposition 2.3.1], the pairing (28) is equal to the canonical χq-pairing defined in [MT83, §2.3] with respect
to the canonical χq-splitting from [MT83, Theorem 1.5].

6.1.2. Local height pairings above p. Let p be a prime above p. Let Diva(AKp
) be the subgroup of Div(AKp

) consisting

of divisors algebraically equivalent to 0. We fix a curvature form αp on Pp for every p | p. Let a =
∑
x nxx ∈ Z0

0 (AKp
) be

a zero-cycle of degree 0 and let D ∈ Diva(AKp
) have disjoint support from a. Suppose that s a meromorphic section of a

line bundle L on AKp
such that D = div(s) and let logL,p be the canonical log-function on L induced by αp with respect

to an arbitrary choice of rigidification. Then we define

(29) 〈a, D〉p :=
∑
x

nx logL,p(s(x)).

Lemma 6.3. The pairing (29) satisfies

(a) 〈·, ·〉p is biadditive,
(b) 〈·, ·〉p is translation-invariant,
(c) if D = div(f) is principal, then 〈a, D〉p = logp f(a).

In particular, it satisfies the conditions of [MT83, §2.2].



p-ADIC ADELIC METRICS AND QUADRATIC CHABAUTY I 21

Proof. The first property follows from Proposition 4.28. Now let a, D and L be as above and let a ∈ A. By Proposition 4.30,
the canonical log function logt∗aL,p on t∗aL is the same as logL,p up to an additive constant. Since deg(a) = 0, we obtain

(30) 〈t∗a(a), t∗a(D)〉p = logt∗aL,p(t∗a(s(a))) = logL,p((ta)∗ ◦ t∗a(s(a))) = logL,p(s(a)) = 〈a, D〉p

as in the proof of [BG06, Theorem 9.5.11].

For (c), let D = div(f) be principal and consider f as a section of OA. Let log′ be the canonical log function on OA.
Then we have 〈a, D〉p = log′(f(a)). But by Proposition 4.24, log′ is the trivial log function. �

Remark 6.4. By [MT83, §2.2], the pairing 〈·, ·, 〉p is induced from a χp-splitting in the sense of [MT83, Section 1]. Hence
the choice of curvature form αp induces a χp-splitting.

Remark 6.5. In contrast to Lemma 6.1, we cannot hope for the pairing to be uniquely determined by these properties,
since the canonical log function depends on the choice αp.

6.1.3. Global height pairings. Let

ĥ = hP,α,χ : A(K)× Â(K)→ Qp

be the canonical height pairing (26) relative to the choices α and χ. It is explained in [MT83, (3.1.1)] that the sum of
the local pairings 〈·, ·〉v defines another global pairing

〈·, ·〉 : A(K)× Â(K)→ Qp .

We now review the construction of the latter pairing and show that both pairings are equal.

For a ∈ Z0
0 (A) and D ∈ Diva(A) with disjoint support, we define

〈a, D〉 :=
∑
v

〈a, D〉v .

Lemma 6.6. The pairing 〈·, ·〉 induces a well-defined pairing on A(K)× Â(K).

Proof. Let a ∈ Z0
0 (A) and D ∈ Diva(A) have disjoint support. It is obvious that 〈a, D〉 does not change if we replace D

by another divisor D′ such that O(D) ' O(D′). Let S : Z0
0 (A) → A be the summation map; its kernel is generated by

cycles of the form t∗xZ − Z. Since D is antisymmetric, t∗−xD −D = div(f) is principal. We find that

(31) 〈t∗zZ − Z,D〉v = 〈Z, t∗−xD −D〉v = χv(f(Z))

for all v, and all Z and x such that the arguments have disjoint support. Hence
∑
v〈·, ·〉v factors through Z0

0 (A)/ ker(S)×
Pic0(A) = A× Â. �

Corollary 6.7. Fix a continuous idelé class character χ : AK/K∗ → Qp and, for every p | p, a purely mixed curvature

form αp for Pp. Let ĥ = ĥP,χ,(αp)p|p denote the corresponding p-adic height. Let 〈·, ·〉 denote the Mazur-Tate height

pairing with respect to the following χ-splitting: For q - p, the splitting is the canonical χq-splitting, and for p | p it is the
χp-splitting induced by αp as in Remark 6.4.

Then we have

ĥ(a, â) = 〈a, â〉

for every a ∈ A(K) and â ∈ Â(K).

Proof. The definitions of ĥ and 〈·, ·〉 imply that

ĥ(a, â) = ĥ(a, â)− ĥ(0, â) = 〈(a)− (0), D〉,

for any D such that [O(D)] = â and such that a, 0 /∈ supp(D). �
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6.1.4. Jacobians. Let J be the Jacobian of a nice curve X/K. We assume for simplicity that there is an Abel-Jacobi
map ι : X → J defined over K. Let Θ denote the theta divisor with respect to ι. Then J is self-dual via the principal
polarization φΘ := φO(Θ) : J → Ĵ . More precisely, by [BG06, Proposition 8.10.20], we have

(id×φΘ)∗P ∼= s∗Θ⊗ (π∗1Θ)−1 ⊗ (π∗2Θ)−1 =: δ

and ∆∗δ ∼= O(Θ)⊗ [−1]∗O(Θ). Therefore, for all a ∈ A(K), we have

hP(a, φΘ(a)) = ĥδ(a, a) = ĥO(Θ)⊗[−1]∗(O(Θ))(a)

where the heights are defined with respect to χ and the curvatures induced by α. We obtain a bilinear pairing

J(K)× J(K)→ Qp
(a, b) 7→ ĥ(a, φΘ(b))

We can express this global height pairing as a sum of local pairings on the curve. Let v be a non-archimedean place of
K and let z, w ∈ Div0(XKv ) with disjoint support. Write w = div(s), where s is a meromorphic section of a line bundle
L ∈ Pic0(X). Let M ∈ Pic0(J) such that L = ι∗M and let z =

∑
x nx(x). If v = q - p, then we define

(32) 〈z, w〉q :=
∑
x

nxvL,q(s(x))χq(q),

where vL,q = ι∗vM,q and vM,q is the canonical valuation on M . Then 〈·, ·〉q is the local Néron symbol on the curve,
see [BG06, Theorem 9.5.17].

If v = p | p, let logM,p be the canonical log function on M and let logL,p = ι∗ logM,p. Then we define

(33) 〈z, w〉p :=
∑
x

nx logL,p(s(x)) .

Write w = w1 − w2, where both wi are non-special, and set bi = ι(wi) ∈ J . Then, by [Lan83, Theorem 5.5.8], we have
wi = ι∗Θ−bi , where Θ−bi = t∗biΘ

− and Θ− = [−1]∗Θ. Moreover, write z =
∑
i(ci) −

∑
i(di), with ci, di ∈ X and let

a = ι∗z =
∑
i(ι(ci))−

∑
i(ι(di)) ∈ Z0

0 (J). We immediately find that

(34) 〈a,Θ−b1 −Θ−b2〉v = 〈z, w〉v
for all v, where the left hand side is defined in (27) (respectively (29)) and the right hand side is defined in (32)
(respectively (33)) if v - p (respectively v | p).

Proposition 6.8. For z and w as above, let [z] = a ∈ J(K) and [w] = b ∈ J(K). Then

ĥ(a, φΘ(b)) = −
∑
v

〈z, w〉v .

Proof. By construction, we have a = S(ι∗z) = S(a), where S : Z0
0 (J)→ J is the summation map, and φΘ(b) = [Θb1−Θb2 ].

Using Corollary 6.7, we obtain

ĥ(a, φΘ(b)) = −〈a,Θ−b1 −Θ−b2〉 = −
∑
v

〈a,Θ−b1 −Θ−b2〉v = −
∑
v

〈z, w〉v,

because [−1] acts on Pic0(A) as multiplication by −1. �

6.2. Coleman-Gross. As in §6.1.4, let X/K be a nice curve with Jacobian J and let ι : X → J be an Abel-Jacobi map
defined over K. Let Θ be the associated theta divisor. We now show that for appropriate choices, our height pairing on
J is the same as the one constructed by Coleman and Gross [CG89]. In fact, to be slightly more general and to avoid
the need to translate between Vologodsky and Coleman integration, we will compare our height pairing with the one
constructed in [Bes17], which is the same as the Coleman-Gross height pairing with Coleman integration replaced by
Vologodsky integration, so that it applies to curves with bad reduction above p as well. We will nevertheless continue to
call this the Coleman-Gross height pairing.

The Coleman-Gross p-adic height pairing

hCG : J(K)× J(K)→ Qp
depends, in addition to χ, on the choice, for every p|p, of a splitting of the Hodge filtration on H1

dR(XKp
); in other words,

a subspace Wp of H1
dR(XKp

) complementary to the image of the holomorphic differentials.

The goal of this section is to prove the following comparison result.
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Theorem 6.9. For p | p, let αp be a choice of curvature form of Pp and let Wp be the complementary subspace associated

to αp in Proposition 6.11 below. Write α = (αp)p|p and W = (Wp)p|p. Relative to these choices, let ĥ = ĥP,α,χ be the

canonical height and let hCG = hCGW,χ be the Coleman-Gross height pairing. Then we have

ĥ(a, φΘ(b)) = −hCG(a, b)

for all a, b ∈ J(K).

The strategy of the proof is to decompose both pairings into local terms and to show that the local terms agree. The
Coleman-Gross height is defined on a pair of divisors z, w ∈ Div0(X) with disjoint support, as the finite sum

hCG(z, w) =
∑
v

hCGv (z, w) ,

over all finite primes v of K, of local height pairings. For every such v the local height pairing hCGv (z, w) depends only on
the images of z, w in Div0(XKv ) To prove Theorem 6.9 it suffices, by Proposition 6.8, to show that hCGv (z, w) = 〈z, w〉v,
where the latter is defined in (32) (respectively (33)) if v - p (respectively v | p).

Remark 6.10. For q - p, the local Coleman-Gross pairing between divisors z, w ∈ Div0(XKq
) with disjoint support is the

unique pairing satisfying the conditions of Lemma 6.1 (see [CG89, Section 2]), so it is equal to our pairing 〈z, w〉q.

It remains to consider places p | p. The local Coleman-Gross pairing 〈z, w〉p, for z, w ∈ Div0(XKp
) with disjoint support

is given in this case as follows: There is a map

Ψ : Ω1
Kp(Xp) → H1

dR(Xp) ,

where the source of the map is the space of meromorphic one-forms on Xp. This map, constructed in [Bes05, Definition 3.9]
(there it is called Ψ′ ) is as extension of the map Ψ considered in [CG89], which is the logarithm of the universal vectorial
extension of the Jacobian of X. It has the following two properties:

(35) Ψ(η) = [η] where [η] is the cohomology class of the form of the second kind η.

(36) Ψd log(f) = 0 for any rational function f .

It easily follows that corresponding to the divisor w there exists a unique meromorphic form ωw with the properties

(1) the form ωw has log singularities and its residue divisor is w;
(2) we have Ψ(ωw) ∈Wp.

The local height pairing is given by

hCGp (z, w) = tp(

∫
z

ωw) ,

where tp and the branch of the logarithm used for integration are obtained from (24).

For the same z, w ∈ Div0(XKp
) as above, our local pairing 〈z, w〉p defined in (33) depends on the choice of a curvature

form αp. In order to compare this with the local Coleman-Gross height pairing hCGp (z, w) we first have to compare this

choice with the choice of a splitting of the Hodge filtration on H1
dR(XKp

) needed for the Coleman-Gross pairing. This is
what we will do in the next subsection.

6.2.1. Curvature forms and complementary subspaces. For notational ease, let F = Kp. Let A be an abelian variety over
F . Recall the notion of purely mixed curvature forms from Definition 4.22 and the discussion preceding it. It is well
known (see for example [Col98, p. 1380]) that there is a natural duality between H1

dR(A) and H1
dR(Â). By [BBM82,

Lemma 5.1.4], Ω1(Â) is precisely the annihilator of Ω1(A) under the pairing. In the next result, we use the notation
introduced before Definition 4.22.

Proposition 6.11. There is a one to one correspondence between purely mixed curvature forms α on P and complementary
subspaces to Ω1(A) in H1

dR(A) which is given as follows:

(1) For α as above, the element α21 ∈ H21
∼= Ω1(Â) ⊗H1

dR(A) gives a linear map from Hom(Ω1(Â), F ) to H1
dR(A)

and the corresponding subspace Wα is its image.
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(2) Given a complementary subspace W , let W ′ be its annihilator in H1
dR(Â). Then W is dual to Ω1(Â) while W ′ is

dual to Ω1(A). The dualities provide elements

α21 ∈ Hom(Hom(Ω1(Â, F ),W )) ∼= Ω1(Â)⊗W ⊂ Ω1(Â)⊗H1
dR(A) ∼= H21 ,

α12 ∈ Hom(Hom(Ω1(A,F ),W ′)) ∼= Ω1(A)⊗W ′ ⊂ Ω1(A)⊗H1
dR(Â) ∼= H12 ,

and the corresponding curvature form is αW = α12 + α21.

Explicitly, the form αW may be written as follows: Choose bases

(37) ω1
k, ω

2
k, k = 1, . . . , g

for Ω1(A) and Ω1(Â), respectively. Take a basis η1
k (k = 1, . . . , g) of W which is dual to the basis ω2

k of Ω1(Â) and a
basis η2

k of W ′ which is dual to the basis ω1
k. In this way, the ω1

k and η1
k form a basis for H1

dR(A) and the dual basis for

H1
dR(Â) is provided by the η2

k and ω2
k. The curvature form corresponding to W is then given by

(38) αW =
∑
k

π∗1ω
1
k ⊗ π∗2 [η2

k]− π∗2ω2
k ⊗ π∗1 [η1

k] .

Proof. It is easy to see that (38) is just an explicit form of the description of αW in terms of W . We recall that the

relation between P and the duality is that ch1(P) lies in H1
dR(A) ⊗H1

dR(Â), embedded in H2
dR(A × Â) by the Kunneth

formula and this class gives the required duality. In concrete terms, this means that with respect to any choice of dual
bases for H1

dR(A) and H1
dR(Â), in particular the bases of ω’s and η’s we chose before, we have

ch1(P) =
∑
k

(π∗1ω
1
k ∪ π∗2η2

k + π∗1η
1
k ∪ π∗2ω2

k) .

This immediately shows that the curvature form αW we have associated with W indeed cups to ch1(P).

Now fix one complementary subspace W0 and choose bases corresponding to W0 as above, and write, in terms of this
basis, a general curvature form satisfying our two conditions

(39) α =
∑
i,j,k,l

aklijπ
∗
i ω

i
k ⊗ π∗j [ωjl ] +

∑
i,j,k,l

bklijπ
∗
i ω

i
k ⊗ π∗j [ηjl ] such that α11 = α22 = 0 and ∪ α = ch1(P) ,

where the aklij and bklij are constants for which we now need to find restrictions. The fact that α cups to ch1(P) implies

that bkk12 = 1 and bkk21 = −1 for all k and all other bklij vanish and that aklij = alkji for all possible indices. The condition

α11 = α22 = 0 implies that akl11 = akl22 = bkl11 = bkl22 = 0 for all k, l. For an α as in (39), let us now compute the corresponding
Wα. We can write

α21 =
∑
k

ω2
k ⊗ ωk

for appropriate classes

ωk = −[η1
k] +

∑
l

akl21[ω1
l ] ∈ H1

dR(A)

and Wα = Span(ω1, . . . , ωg). As the spanning vectors for Wα are congruent modulo Ω1(A) to the basis elements [η1
k], it

is clear that Wα is indeed complementary.

To complete the proof, it remains to show that the two constructions are inverses one one another. It is immediate that
WαW = W . To see that also αWα

= α we now repeat the computation above of a general curvature form, but this time
we start, instead of the basis provided by W0, with the basis provided by W = Wα itself. With this choice of basis it is
now immediate that all aklij are 0 and therefore α = αW . �

6.2.2. Forms of third kind with prescribed residues from log functions. Continuing with the notation of the previous
subsection, suppose now that the abelian variety is J = Jac(X), the Jacobian of a nice curve X over F = Kp. There is an
isomorphism H1

dR(X) ∼= H1
dR(J), compatible with the Hodge filtration. Hence the choice of a complementary subspace

W ∈ H1
dR(X), as required for the construction of the local Coleman-Gross pairing, determines a complementary subspace

in H1
dR(J). We denote this subspace by W . By Proposition 6.11, this choice determines a curvature form α on the

Poincaré line bundle on J × Ĵ . Let w ∈ Div0(X) and suppose that L is a line bundle on X and s a rational section of
L such that div(s) = w. Then α induces a canonical log function logL and a local height pairing 〈·, ·〉p as in (33). The
function logL(s) is locally analytic outside the support of w and d logL(s) is independent of the ambiguity in logL.

Proposition 6.12. In the situation above we have d logL(s) = ωw.

By the construction of the two local height pairings it is clear that Proposition 6.12 implies:
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Corollary 6.13. We have hCGp (z, w) = 〈z, w〉p.

Proof of Theorem 6.9. This follows from Remark 6.10, Corollary 6.13 and Proposition 6.8. �

Proof of Proposition 6.12. The metrized line bundle (L, logL) is flat, because logL is the pullback of a log function on a
line bundle on J , which is flat by Theorem 4.18 and Corollary 4.27 because α is purely mixed. Thus, the one form d logL(s)
is meromorphic, and it has simple poles with residue divisor exactly w by Lemma 3.12. Proving that d logL(s) = ωw is
therefore equivalent to showing that Ψ(d log(s)) ∈W . For a given line bundle L of degree 0, the class Ψ(d log(s)) ∈ H1

dR(X)
is independent of the choice of the section s, by (36), because for another s the form will differ by a d log of a rational
function. The association

L 7→ Ψ(d log(s))

clearly maps tensor products to sums and therefore gives a homomorphism

r : J(F )→ H1
dR(X) ,

which is locally analytic. The proposition follows if we can show that the image of r is contained in W .

We will follow closely the proof of Theorem 7.3 in [Bes05]. Since r is locally analytic it suffices to show that its derivative
with respect to any vector field on J at one, hence at any point, is in W . The computation is essentially the same as
in the proof of Theorem 7.3 in [Bes05]. Let PX be the pullback of P to X × J via the map X × J → J × J . Let
αX be the curvature of PX induced by pullback of α. It has exactly the same formula as (38) under the identification
of the cohomologies and forms of X and J . To compute the derivative of r with respect to a vector field T on J , we
pick a rational section s defined on an open U ∈ X × J . Locally, in the analytic topology on J , the relative form
d logPX

(s) is a family of forms of the third kind on X in the sense of [Bes05, Definition A.1] (called there relative forms
of the third kind). We need to apply Ψ fiber by fiber and then differentiate with respect to T . However, because the
derivative of a family of forms of the third kind is a form of the second kind by Definition A.3 in [Bes05] and the following
discussion, and these are sent by Ψ to their associated cohomology classes according to (35), we can instead differentiate
with respect to T and then take the cohomology class fiber by fiber. We now repeat the computation from the proof
of [Bes05, Theorem 7.3], adjusting notation. We need to compute ∂T d logPX

(s). This is the same as d(d logPX
(s)|∂T ),

where the last notation means retraction in the direction of T . Then, just as in the above reference, we notice that
∂(d logPX

(s)|∂T ) = ∂(d logPX
(s)|∂T ) with the retraction acting on the first coordinate of the tensor product. The term

∂(d logPX
(s) is precisely the curvature αX restricted to U . Just as in [Bes05] after retraction and restriction to the fiber

of the projection to J , the only term that survives is ∑
ω2
k|∂T ωk .

Again as in [Bes05], this shows that the required cohomology class lies in the subspace spanned by the ωk, which is W . �

7. Quadratic Chabauty

Let X/Q be nice curve of genus g > 1 such that X(Q) 6= ∅ and let p be a prime number. Our goal in this section is to use
the theory of (canonical) p-adic heights developed above (in particular, the properties of the local terms) to construct a
nonconstant locally analytic function on X(Qp) whose values on X(Q) can be controlled. Fixing a base point b ∈ X(Q),
we let ι = ιb : X ↪→ J denote the corresponding Abel-Jacobi map, inducing a morphism NS(J)→ NS(X), where J is the
Jacobian of X. We fix a purely mixed curvature form α on Pp. We assume that ker(NS(J)→ NS(X)) has positive rank.

Remark 7.1. The assumption that ker(NS(J) → NS(X)) has positive rank, combined with the surjectivity of ι∗|Pic0(X)

guarantees that there is some line bundle L on J such that ι∗L = OX . Henceforth we fix such a line bundle L.

Since ι∗L = OX , we get a map on total spaces of line bundles ι̃ : X ×Gm → L×. We let 1 denote the section x 7→ (x, 1)
of the natural projection X × Gm → X. We endow L with the rigidification rb := ι̃(1(b)); the corresponding canonical
adelic metric (logL,p, {vL,q}q) then satisfies

(40) vL,q(rb) = 0

for all q 6= p and

(41) logL,p(rb) = 0 .

We write ĥL for the corresponding p-adic height. By pullback, we obtain an adelic metric on OX :

(42) (logp, {vq}q) := ι∗(logL,p, {vL,q}q) .
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For a prime q 6= p, the valuation vq is a Q-valuation (see Remark 2.7) and we define a local height function

λq : X(Qq)→ Q ; x 7→ vq(1(x)) .

Lemma 7.2. Let q 6= p be prime. Then λq

(1) takes only finitely many values;
(2) is identically 0 if X has potentially good reduction at q.

Proof. Since vL,q is a good valuation on L, Proposition 2.9 implies that λq is a locally constant Q-valued function on
X(Qp), implying the first statement. For the second, we may assume that J has good reduction at q by passing to an
extension. Then a good valuation on L is a model valuation on the Néron model J by Remark 2.12. The closure L of L
on J pulls back to an extension of OX to a semistable model X of X, so vq is constant, hence identically 0 by (40). �

Henceforth we assume, in addition to rk NS(J) > 0, that rk J(Q) = g. We also assume that p is a prime number
such that the p-adic closure of J(Q) has finite index in J(Qp). Fix a basis (ω0, . . . , ωg−1) of H0(J,Ω1). By abuse of
notation, we also write ωi for ι∗ωi. Our assumptions on J imply that (J(Q)⊗Qp)∨ is generated by f0, . . . , fg−1 , where

fi(x) = log(x)(ωi) =
∫ x

0
ωi. By Proposition 5.5, the height ĥL is a quadratic polynomial in the fi with constant term 0,

say

(43) ĥL =
∑

aijfifj +
∑

bkfk .

The idea of the Quadratic Chabauty method is to solve for the constants aij and bk and to use that for x ∈ X(Q),
Equation (43) implies

(44)
∑

aij

∫ x

b

ωi

∫ x

b

ωj +
∑

bk

∫ x

b

ωk − logp ◦1(x) =
∑
q 6=p

λq(x)χq(q) .

Theorem 7.3. Suppose that

ĥL =
∑

aijfifj +
∑

bkfk

for constants aij , bk ∈ Qp. Then

F : X(Qp)→ Qp ; x 7→
∑

aij

∫ x

b

ωi

∫ x

b

ωj +
∑

bk

∫ x

b

ωk − logp ◦1(x)

is a Vologodsky function. It takes values on X(Q) in the finite set T = {
∑
q 6=p lq ·χq(q)}, where lq runs through the values

that the function λq takes on X(Qq). Moreover, for every t ∈ T there are only finitely many points x ∈ X(Qp) such that
F (x) = t.

Proof. Since logp is a Vologodsky function on O×X and since 1: X(Qp) → O×X(Qp) has no poles, the function logp ◦1 is
indeed a Vologodsky function on all of X(Qp). Hence the same is true for F .

If x ∈ X(Q), then we have

F (x) = ĥL(ι(x))− logp ◦1(x) =
∑
q 6=p

λq(x)χq(q) .

The finiteness of T follows from Lemma 7.2.

To prove the final claim, note that a Vologodsky function is locally analytic. If it obtains a value an infinite number of times
on a residue disc, then it must be constant on that disc, hence by the identity principle for Vologodsky functions [Bes05,
Lemma 2.5] it must be constant. It is therefore sufficient to prove that F is not constant. The exact sequences (5) and (7)
imply that it is sufficient to prove that

(45) ∂d(F ) 6= 0.

First note that ∂d logp ◦1 = Curve(logp) as in the proof of [Bes05, Proposition 4.4]. But F − logp ◦1 is a product of

integrals of holomorphic forms and thus its ∂d resides in Ω1(X) ⊗ Ω1(X) ⊂ Ω1(X) ⊗H1
dR(X). It suffices then to prove

that Curve(logp) is not in this subspace. As Curve(logp) = ι∗ Curve(logL), it suffices to show that

(46) Curve(logL) /∈ Ω1(J)⊗ Ω1(J) .

To show this, we use the Hodge filtration over C. It is well-known that over C, the Chern class of L is anti-invariant
with respect to complex conjugation. Hence, it is not in F 2H2

dR(J), because F 2 ∩ F 2 = 0. This proves (46), and hence
completes the proof of the theorem. �
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7.1. Computing rational points using Quadratic Chabauty. Let X/Q be a nice curve satisfying the conditions of
Theorem 7.3. In order to compute the rational points on X, we need to

(I) compute λp(x) for x ∈ X(Qp) (see §7.1.1);
(II) find all possible values of λq(x) for bad primes q 6= p and x ∈ X(Qq) (see §7.1.2);

(III) solve for the coefficients aij and bk (see §7.1.3)
(IV) compute the set Z := {z ∈ X(Qp) : F (z) ∈ T} ;
(V) identify X(Q) inside Z.

These tasks are the same as in [BD18, BDM+19]. The final two steps are standard: Step (IV) is possible in practice using
the Weierstrass preparation theorem. If rkNS(J) > 2, we can repeat Steps (I)–(IV) for another line bundle L′ on J such
that ι∗L′ ∼= OX and such that the classes of L and L′ in NS(J) are independent. We expect that the sets Z for L and L′

will usually only have X(Q) as common roots, unless there is a geometric reason for further common roots. Alternatively,
we can combine Z with information at primes q 6= p via the Mordell-Weil sieve [BS10, BBM17].

We briefly discuss Steps (I), (II) and (III) below, referring to future work for more details.

7.1.1. Computing λp. For Step (I), we need to expand the function λp = logp ◦1 into a convergent power series on every
residue disk of X(Qp). Recall that logp = ι∗ logL,p has curvature ι∗αL, where

αL =
1

2
αL+ =

1

2
(id×φL)∗α .

However, αL does not determine logL,p; in fact, it is not straightforward to construct any good log function on Lp.

Fortunately, this is not necessary. Let log′p be some log function on OX with curvature ι∗αL and set λ′p := log′p ◦1. By

Proposition 3.4, we have log′p = logp +
∫
θ for some unknown holomorphic form θ ∈ Ω1(Xp) which induces via ι∗ a linear

form

` : J(Qp)→ Qp a 7→
∫ a

0

θ .

We set
h′ := ĥL + ` .

Then Theorem 7.3 remains true if we replace ĥL by h′ and λp by λ′p, without changing λq for q 6= p. Hence we can work

with log′p in place of logp and there is no need to compute θ. An explicit construction of a log function log′p on OX with
curvature form i∗αL as an iterated integral is given in § 3.3.3. It thus remains to compute the curvature form αL; we
will describe in future work how this can be done in terms of a complementary subspace W and how this can be used to
compute log′p in practice.

7.1.2. Computing (all possible values of)λq. Let q 6= p be a prime of bad reduction for X. We would like to compute a
finite set Tq ⊂ Q such that λq(X(Qq)) ⊂ Tq. We first strengthen Lemma 7.2.

Proposition 7.4. Let K/Qq be a finite extension such that X has a semistable regular model X over OK . Then λq(P )
only depends on the component of the special fiber Xq that P reduces to.

Proof. Let C be a component of the special fiber Jq of the Néron model of J over OK . It suffices to show that if x and y
are points in X(K) such that ι(x) and ι(y) both reduce to C, then we have λq(x) = λq(y).

Let s be a meromorphic section of L such that ι(x) and ι(y) are not in the support of D := div(s). By [Lan83,
Theorem 11.5.1], there is a constant γs such that for all a ∈ J(K) \ supp(D) we have

(47) vL,q(s(a)) = i(D, a) + γs ,

where i(D, a) is the intersection multiplicity of the extensions of D and a on J defined before [Lan83, Theorem 11.5.1].
Since ι∗L = OX , the section s pulls back to a rational function f on X. We then have

λq(x)− λq(y) = vL,q(s(ι(x))− vL,q(s(ι(y))− (ordq(f(x))− ordq(f(y)))

= i(D, ι(x))− i(D, ι(y))− (ordq(f(x))− ordq(f(y))) .

To show that this vanishes, we use the fact that ι induces a morphism

ῑ : Xsm → J ,

where Xsm is the smooth locus of X. Denoting the closure of D on J by D and the closure of D′ := div(f) on X by D′,
we then have ῑ∗D = D′+ V ′s for some vertical divisor V ′s on X′. We extend V ′s to a vertical divisor Vs on X. If P ∈ X(K)
with closure P on X, then the projection formula implies

i(D, ι(P )) = (D . ῑ(P )) = (D′ .P) + (Vs .P) = ordq(f(P )) + (Vs .P) .
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Since the intersection multiplicity (Vs .P) only depends on the component of Xq that P reduces to, we deduce that
λq(x) = λq(y). �

By the proof of Proposition 7.4, it suffices to find, for every component C of Jq, one point x ∈ J(K) reducing to C and
to compute vL,q(s(z)) for some section s of L such that x /∈ div(s). However, this is a difficult problem in general. Even
for L = Θ, it is only known how to compute the canonical valuation explicitly for hyperelliptic curves of genus ≤ 3
(see [FS97, Sto02, MS16, Sto17]).

Remark 7.5. In future work, we will describe the pullback of the canonical valuation vL,q in terms of iterated Vologodsky
integrals directly on the curve. We will show how this may be used to compute λq in practice.

7.1.3. Solving for the height. We briefly discuss possible approaches to the computation of the constants aij and bk in

Theorem 7.3. The line bundle L induces an endomorphism EL = φ−1
Θ ◦φL on J , and hence on H1

dR(X) ∼= H1
dR(J). We set

Jp := J(Q)⊗Qp. If there are enough points in X(Q) such that their images generate (Jp⊗Jp)⊕Jp under the embedding

(ι ⊗ EL ◦ ι + [L−], ι), then we can compute the constants aij and bk by computing ĥL (or h′) and the functions fi and
fifj in these images.

Alternatively, note that the bilinear pairing associated to ĥL and h′ is the same, say

B(x, y) :=
1

2
(h′(x+ y)− h′(x)− h′(y)) =

1

2
(hL(x+ y)− hL(x)− hL(y)) .

We want to write B in terms of the basis of (J(Q)⊗ J(Q)⊗Qp)∗ given by

(gij)0≤i≤j<g , gij =
1

2
(fifj + fjfi))

by evaluating B and the gij in sufficiently many points. We conclude that

(48) B(x, y) = ĥΘ(x,EL(y)) .

If we evaluate ĥΘ in sufficiently many points, we get an expression

ĥΘ(x, y) =
∑
i,j

cij(fifj + fjfi)(x, y)

and we obtain the constants aij by evaluating, using fi(EL(y)) =
∫ EL(y)

0
=
∫ y

0
E∗L(ωi). Since B(x, x) = ĥL+(x) is the

quadratic term of both ĥL and h′, the linear part of h′ is h′(x) − B(x, x), and we can compute it by evaluating in
sufficiently many points. This gives us the constants bk.

8. Comparison with Balakrishnan and Dogra’s approach to Quadratic Chabauty

In this section we clarify the relation between our Quadratic Chabauty construction and the original one of Balakrishnan
and Dogra [BD18]. Using the equivalence between the height pairings of Nekovář and of Coleman-Gross, their local
contributions are of the form

hCGv (D(b, z), z − b),
where D(b, z) is a divisor on X constructed using the line bundle L equipped with a section. It turns out that we use the
same global height (see Proposition 8.5).

We first spell out the construction of the divisor D(b, z) ∈ Div(X) starting from a divisor in the class of the line bundle
L ∈ Pic(J). For this, we modify the construction of the divisor DZ(b) in [DF21, Section 2.2]. The divisor DZ(b) of [DF21]
corresponds to the diagonal cycle D(b, b) in our notation.

8.1. Construction of the divisor D(b, z). Let X be a nice curve of genus g > 1 over a field K such that X(K) 6= ∅.
Fix a base point b ∈ X(K). Let z ∈ X(K). We then have natural maps i1,b, i2,z,∆: X → X ×X, defined as follows. We
denote by ∆ the diagonal embedding. Let i1,b : X → X ×X be the map defined by i1,b(x) := (x, b). Similarly, we define
i2,z : X → X ×X by i2,z(x) = (z, x).

Let ι = ιb : X → J be the Abel-Jacobi map with respect to the base point b and let m : J × J → J denote the group law
on the Jacobian. We define ι(2) : X ×X → J to be the composition m ◦ (ι, ι). Let φz : Pic(X ×X)→ Pic(X) be the map
φz := ∆∗− i∗1,b− i∗2,z, where ∆∗ : Pic(X ×X)→ Pic(X) is the pullback map on line bundles induced by ∆: X → X ×X,
etc.
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Definition 8.1. Let L ∈ Pic(J) and let s be a section of L. Let Z := (ι(2))∗(L, s) ∈ Div(X ×X). Define D(b, z) to be
the divisor corresponding to the image of (L, s) under the composition

Pic(J)
(ι(2))∗−−−−→ Pic(X ×X)

φz−→ Pic(X).

We will denote the composite map θX,b,z.

Balakrishnan and Dogra have an intersection-theoretic condition on the divisor Z as above [BD18, Definition 6.2, § 6.3].
They use this condition to justify that certain mixed extensions of Galois representations constructed out of D are
isomorphic (see the end of [BD18, § 6.3] for more details). We now prove that their condition is equivalent to the
condition that deg(ι∗L) = 0, our key condition for running our approach to Quadratic Chabauty.

Lemma 8.2. The condition Z.(∆ − X × P1 − P2 × X) = 0 for all P1, P2 ∈ X is equivalent to the condition that
deg(ι∗L) = 0.

Proof. We may assume that P1 = P2 = b without any loss of generality. Using the projection formula in the first line,
Z = (ι(2))∗(L, s) in the second line, the identities

ι(2) ◦ i∆ = [2] ◦ ι, ι(2) ◦ i1,b = ι(2) ◦ i2,b = ι

in the third line, and the isomorphisms from Equations (22), (15) and (16)

[2]∗(L⊗2) = [2]∗(L+)⊗ [2]∗(L−) = (L+)⊗4 ⊗ L−⊗2
= (L+)⊗2 ⊗ L⊗2

in the fourth line, we get

Z.(∆−X × {b} − {b} ×X) = deg(∆∗(Z))− deg(i∗1,b(Z))− deg(i∗2,b(Z))

= deg((∆∗ι(2)∗L)⊗ (i∗1,bι
(2)∗L)−1 ⊗ (i∗2,bι

(2)∗L)−1)

= deg(ι∗([2]∗L⊗ L⊗−2))

=
deg(ι∗L+)

2
.

Note that we are allowed to divide by 2, because NS(X) ∼= Z is torsion-free. Since deg(ι∗L) = deg(ι∗([−1]∗L)), it follows
that deg(ι∗L+) = 2 deg(ι∗L) and we are done. �

8.2. Endomorphisms of J and D(b, z). We keep the notation of the previous subsection and we assume, in addition,
that ι∗L ∼= OX . Next, we modify the arguments in [DF21, Section 2.1] to reinterpret the divisor class of D(b, z) in
Definition 8.1 in terms of the action of the endomorphism of J corresponding to the line bundle L acting on the divisor
class ι(z) of z − b (Lemma 8.4 (g)). Along the way, we show that we can identify the Chow-Heegner point/Diagonal
cycle DZ(b) of [DF21, Section 2.2] with the pullback of L− by ι (Lemma 8.4 (e)). We will then use Lemma 8.4 to prove
Proposition 8.5, which is a comparison between the global Coleman-Gross height pairing between the divisors z − b and
D(b, z), and our canonical height for the line bundle L at ι(z).

We first need some more notation. Let π1, π2 denote the standard projections X ×X → X to the first and second factors
respectively. Let

ψ : Pic(X ×X)→ End(J)

denote the usual action on J of a correspondence on X ×X, where we first pull back a degree 0 divisor on X by π1, then
intersect it with the given class in Pic(X ×X) and then push forward this intersection by π2. The map ψ is surjective,
with kernel the fibral divisors corresponding to π1, π2.

We now describe a natural splitting of the exact sequence

(49) 0→ π∗1(Pic(X))⊕ π∗2(Pic(X))→ Pic(X ×X)
ψ−→ End(J)→ 0

using the maps i1,b, i2,z. This splitting will then be used to show that the map θX,b,z from Definition 8.1 factors through
End(J). The splitting is straightforward – since π2 · i1,b and π1 · i2,z are constant maps, we see that ker(i∗1,b)⊕ ker(i∗2,z) is

a natural complement to the image of π∗1(Pic(X))⊕ π∗2(Pic(X)) in Pic(X ×X). This gives a natural isomorphism, which
by similar abuse of notation as in [DF21], we call ψ−1

z –

ψ−1
z : End(J)

∼=−→ ker(i∗1,b)⊕ ker(i∗2,z).
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Remark 8.3. Using the decompositions

Pic0(X ×X) = π∗1(Pic0(X))⊕ π∗2(Pic0(X)),

and
Pic(X ×X) = π∗1(Pic(X))⊕ π∗2(Pic(X))⊕ ker(i∗1,b)⊕ ker(i∗2,z),

which in turn induce the decomposition

NS(X ×X) = π∗1(NS(X))⊕ π∗2(NS(X))⊕ ker(i∗1,b)⊕ ker(i∗2,z),

we may view ker(i∗1,b)⊕ ker(i∗2,z) as a subspace of NS(X ×X), if we wish to do so.

For any a ∈ J , let ma : J → J denote the translation by a map. Let [−1] denote the inversion map on J . For any

L ∈ Pic(J), let L+ := L ⊗ [−1]∗L and let L− := L ⊗ ([−1]∗L)−1. Given L ∈ Pic(J), let φL : J → Ĵ be the map
a 7→ m∗a(L) ⊗ L−1. If Θ is the theta divisor on J with respect to ι, then φΘ denotes the corresponding principal
polarization.

Lemma 8.4. Let θ̃X,b,z : End(J) → Pic(X) be the map θ̃X,b,z := φz · ψ−1
z . Let φ̃ : Pic(J) → End(J) be the map

φ̃(L) := φ−1
Θ · φL. Then

(a) ψ · (ι(2))∗ = −φ̃.

(b) −θX,b,z = θ̃X,b,z · φ̃.

(c) θ̃X,b,z(φ̃(L)) = −[D(b, z)].

(d) 2φ̃(L) = φ̃(L+).
(e) [D(b, b)] = φ−1

Θ (L−).

(f) [D(b, z)]− [D(b, b)] = −ι∗(φL([z − b])) = φ̃(L)([z − b]).

(g) [D(b, z)] = φ−1
Θ (L−) + φ̃(L)([z − b])

Proof.

(a) The inverse of φΘ is −ι∗, and after unwinding definitions (see [DF21, Section 2.1] for more details), this in turn
implies that

ψ · (ι(2))∗ = −φ̃.
(b) Let L ∈ Pic(J) and let [Z] := (ι(2))∗(L) ∈ Pic(X ×X). Then, since ψz splits the exact sequence (49), there is a fibral

divisor [F ] ∈ π∗1(Pic(X)) ⊕ π∗2(Pic(X)) such that ψ−1
z · ψ([Z]) = [Z] + [F ]. Since φz is trivial on fibral divisors, and

in particular on [F ], combining this with (a), it follows that

−θX,b,z(L) = −φz · (ι(2))∗(L) = −φz · ψ−1
z · ψ · (ι(2))∗(L) = φz · ψ−1

z · φ̃(L) = θ̃X,b,z · φ̃(L).

(c) Part (c) follows from Part (b) and Definition 8.1.
(d) Note that L− is antisymmetric, and antisymmetric line bundles form precisely the kernel of the natural map Pic(J)→

NS(J). Since the map φ̃ : Pic(J)→ End(J) factors as

φ̃ : Pic(J)→ NS(J)→ End(J),

combining this with the previous sentence, it follows that φ̃(L−) = 0. Applying the homomorphism φ̃ to the identity
L⊗2 = L+ ⊗ L− and using the previous line, we get

2φ̃(L) = φ̃(L⊗2) = φ̃(L+ ⊗ L−) = φ̃(L+) + φ̃(L−) = φ̃(L+).

(e) Let [2] : J → J denote the multiplication by 2 map on J . Since ι(2) · i1,b = ι(2) · i2,b = ι and ι(2) ·∆ = [2] · ι, a direct
computation with Definition 8.1 and the identity

[2]∗L = L⊗3 ⊗ [−1]∗L

shows that

(50) [D(b, b)] = ι∗([2]∗L⊗ L⊗−2) = ι∗(L+).

Since ι∗(L) = 0 by choice of L ∈ Pic(J), it follows that

0 = (ι∗L)⊗2 = ι∗(L⊗2) = ι∗(L+) + ι∗(L−),

and therefore

(51) ι∗(L+) = −ι∗(L−).
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Combining Equations (50) and (51) with the equality −ι∗ = φ−1
Θ , we get

[D(b, b)] = −ι∗(L−) = φ−1
Θ (L−).

(f) Combining Definition 8.1 with the identities ι(2) · i2,b = ι and ι(2) · i2,z = mι(z) · ι and once again using the equality

−ι∗ = φ−1
Θ , we get

[D(b, z)]− [D(b, b)] = (i∗2,b − i∗2,z)((ι(2))∗L) = −ι∗(m∗ι(z)L⊗ L
−1) = −ι∗(φL(ι(z))) = φ̃(L)(ι(z)).

(g) Add the equations in Parts (e) and (f). �

8.3. Comparison of global heights. Now let K = Q. We now compare our approach to Quadratic Chabauty with the
one used in [BD18]. We keep the notation of the previous subsection.

Proposition 8.5. Let ĥL be the canonical p-adic height with respect to a choice α of curvature on P and a continuous idelé
class character χ : AK/K∗ → Qp. Let hCG : Div0(X) × Div0(X) → Qp denote the global Coleman-Gross height pairing
between degree 0 divisors relative to χ and the complementary subspace W corresponding to α as in Proposition 6.11.
Then we have for all z ∈ X(Q)

2ĥL(ι(z)) = −hCG(z − b,D(b, z))

Proof. We will use the notation of Lemma 8.4. Let EL := φ̃(L) = φ−1
Θ · φL ∈ End(J). Let â be the point in Pic0(J)

corresponding to the antisymmetric line bundle L−. By Lemma 8.4 (g), we have

[D(b, z)] = φ−1
Θ (â) + EL(ι(z)).

Hence Theorem 6.9 implies that

hCG(z − b,D(b, z)) = −ĥP(ι(z), â+ φL(ι(z))).

Now, by Corollary 5.9 (a), it follows that

ĥP(ι(z), â+ φL(ι(z))) = 2ĥL(ι(z)).

�

Recall that the approach of Balakrishnan-Dogra is based on the height hCG(z − b,D(b, z)), whereas we use the height

ĥL(ι(z)) to set up Quadratic Chabauty. Proposition 8.5 shows that the approaches are closely related. In fact one can
refine Proposition 8.5 to compare the local contributions to Quadratic Chabauty; we will do so in future work.
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[GK17] W. Gubler and K. Künnemann. A tropical approach to nonarchimedean Arakelov geometry. Algebra Number Theory, 11(1):77–180,
2017. 2.11

[Gub03] W. Gubler. Local and canonical heights of subvarieties. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2(4):711–760, 2003. 2.12

[Kay20] E. Kaya. Explicit Vologodsky integration for hyperelliptic curves. ArXiv preprint, arXiv:2008.03774, 2020. 1
[Kim05] M. Kim. The motivic fundamental group of P1 − {0, 1,∞} and the theorem of Siegel. Invent. Math., 161(3):629–656, 2005. 1

[Kim09] M. Kim. The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci., 45(1):89–133, 2009. 1
[KK20] E. Katz and E. Kaya. p-adic Integration on Bad Reduction Hyperelliptic Curves. International Mathematics Research Notices,

2020. rnaa272. 1
[KL] E. Katz and D. Litt. p-adic iterated integration on semi-stable curves. In preparation. 3.10

[Lan83] S. Lang. Fundamentals of Diophantine geometry. Springer-Verlag, New York, 1983. 4.1, 6.1.4, 7.1.2, 7.1.2
[LV20] B. Lawrence and A. Venkatesh. Diophantine problems and p-adic period mappings. Invent. Math., 221(3):893–999, 2020. 1

[MB85] L. Moret-Bailly. Métriques permises. Number 127, pages 29–87. 1985. Seminar on arithmetic bundles: the Mordell conjecture
(Paris, 1983/84). 4

[MP12] W. McCallum and B. Poonen. The method of Chabauty and Coleman. In Explicit methods in number theory, volume 36 of Panor.
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