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p-adic functions vanishing on rational points

Let X be a nice curve over Q of genus g with good reduction at p.
Let J be the Jacobian of X with Mordell-Weil rank r .

Assume r = g > 1.

p-adic height pairings + “nice” L ∈ Pic(J)⇒
explicit locally non-constant p-adic analytic (Coleman) function

f : X (Qp)→ Qp such that X (Q) ⊂ {x : f (x) ∈ T , T finite}.

Question: What makes this work?
Answer 1 [Balakrishnan-Dogra]: Uses p-adic Hodge theory.

Answer 2 [Besser-Mueller-S]: Give an Arakelov-theoretic
explanation by a new theory of canonical p-adic height functions.
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Brief history of Quadratic Chabauty

Why assume r = g?
If r < g , then the Chabauty-Coleman method applies.
We can take f =

∫
ω such that f vanishes on J(Q).

Landmarks in applying Quadratic Chabauty

1 Integral points on monic odd-degree hyperelliptic curves.
Balakrishnan-Besser-Mueller /Q, 2016.
Balakrishnan-Besser-Bianchi-Mueller /number fields, 2020.

2 Rational points for curves when rank(NS(J)) > 1.
Balakrishnan-Dogra, 2016.

3 Rational points on the cursed curve Xs(13).
Balakrishnan-Dogra-Mueller-Tuitman-Vonk, 2019.
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Quadratic Chabauty wishlist

X/Q nice curve. b ∈ X (Q). rank(J(Q)) = r = g . p good prime.

Want:

h =
∑

hq : J(Q)→ Qp such that

h is a quadratic function. r = g ⇒ h can be expanded in an
explicit basis of products of single Coleman integrals.

hp is an (iterated) Coleman integral.

For q 6= p, hq takes on finitely many values T on X (Qq).
Furthermore, hq = 0 if X has potential good reduction at q.

h − hp locally non-constant function.



A new theory of canonical heights on abelian varieties

X/Q nice curve.
b ∈ X (Q). i : X → J Abel-Jacobi map.
rank(J(Q)) = r = g .
p good prime.

Question: Is there an Arakelov-theoretic explanation of the role of
“nice” L (i.e. deg(i∗L) = 0) without any p-adic Hodge theory?

Answer: Yes!

Theorem (Besser-Mueller-S.)

Let L ∈ Pic(J). There is a definition of a canonical p-adic height

hcanL : J(Q)→ Qp.

Assume that [L] 6= 0 ∈ NS(J) and that i∗L ∼= OX . Then hcanL
satisfies the conditions in the Quadratic Chabauty wishlist.
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Canonical p-adic heights for line bundles on abelian
varieties

Theorem (Besser-Mueller-S.)

Let L ∈ Pic(J). There is a definition of a canonical p-adic height

hcanL : J(Q)→ Qp.

Assume that [L] 6= 0 ∈ NS(J) and that i∗L ∼= OX . Then hcanL
satisfies the conditions in the Quadratic Chabauty wishlist.

Strategy:

Define a notion of a p-adic adelic metric associated to a line
bundle L on J equipped with a “curvature form”.

Identify a canonical metric for a given curvature form.

Show Quadratic Chabauty wishlist is satisfied using properties
of the canonical metric for L with [L] 6= 0 and i∗(L) ∼= OX .
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History of various constructions of p-adic height pairings
NEW! One curvature form to rule them all!

Zarhin, 1987.
Schneider, 1982.
Mazur-Tate, 1983.
Coleman-Gross, 1989.
Nekovar, 1993.

Question: Why a new theory of canonical p-adic heights?

Answer:

Our construction parallels Zhang’s construction of canonical
R-valued heights from R-valued adelic metrics.

It connects p-adic heights for various p.

New way to construct and compute local contributions at
finite places to canonical R-valued heights?
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Canonical height machines on abelian varieties

A/K
abelian variety/# field

L ∈ Pic(A)

Continuous idele class character
χ : A×K/K

× → Qp

Curv(L) ∈ Ω1(A) ⊗ H1
dR(A)

hcan,RL : A(K )→ R hcan,pL,χ,Curv(L) : A(K )→ Qp

If L is symmetric, i.e., if L ∼= [−1]∗(L), then hcanL is quadratic:

hcanL (nP) = n2hcanL (P).

If L is anti-symmetric, i.e., if L−1 ∼= [−1]∗(L), then hcanL is linear:

hcanL (nP) = n1hcanL (P).
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Ingredients for defining p-adic heights
Idele class character of a number field K

1 A continuous idele class character/global “log” function

χ =
∑

χv : A×K/K
× → Qp

that is ramified at all primes ν | p. This means

we have χv (O×
v ) = 0 for v - p;

for every v | p, there is a Qp-linear trace map tv such that we
can decompose

O×
v

χv //

logv

  

Qp.

Kv

tv
>>

Note:
χv ramified ∀v | p ⇒ This factorization extends to K×v .
 Get a branch of the logarithm logv : K×v → Kv .



Ingredients for defining p-adic height functions
Curvature forms for line bundles

2 For every v | p, a class Curv(Lv ) ∈ Ω1(Av )⊗ H1
dR(Av ) called

the curvature form for the line bundle such that

Ω1(Av )⊗ H1
dR(Av )

∪−→ H2
dR(Av )

Curv(Lv ) 7→ c1(Lv ).

Example: Let X/K be a nice curve of genus g ≥ 1.
Fix a complementary subspace W to Ω1(Xv ) in H1

dR(Xv ).
Let {ω1, . . . , ωg} be a basis for Ω1(Xv ).
If {ω1, . . . , ωg} be the unique dual basis in W (with respect to the
cup product pairing). Then

2

g∑
i=1

ωi ⊗ ωi

is a curvature form for the tangent bundle of Xv .



From curvature forms to metrics

Proposition: [Besser, p-adic Arakelov theory, 2005]
For every curvature form Curv(Lv ) ∈ Ω1(Av )⊗ H1

dR(Av ), there is
an associated metric logL ∈ OCol(L×v ) obtained by an iterated
integral.

Curv(Lv ) :=
∑

ωi ⊗ [ηi ] 7→
∫
ωi

(∫
ηi

)
=: logL(s).

We have, as before,

logL(αw) = logv (α) + logL(w) for every α ∈ Kv
×
,w ∈ L×x .

Note: There are multiple metrics with the same curvature, but any
two such metrics differ by the integral of a holomorphic form.



Q-valued metrics away from p

Let v - p be a finite place of K .
Let νv = log || · ||v .
Let X/Kv be a projective variety.

Definition: (Inspired by Moret-Bailly, Zhang)
A (Q-valued) metric on a line-bundle L is a locally constant
function (for the analytic topology)

ν : Tot(L) \ {0} =: L× → Q

such that

ν(αw) = νv (α) + ν(w) ∀α ∈ Kv
×
, ∀w ∈ L×x , x ∈ X (Kv )

Note: Can define pull-backs and tensor powers of metrics.
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Examples of metrics

Example 1: Model metrics
Let X /Zp be a proper flat integral model of X/Qp.

Let L be a line bundle on X extending a line bundle L on X .

Let s be a meromorphic section of L.

Let x ∈ X (Q) with closure x in X .

The (Q-valued) model metric coming from L is given by

νL (s(x)) := valuation of x∗(s) in the lattice x∗(L ).

Example 2: Admissible metrics
Come from a model + “evaluation+norm” of invertible functions.
Closed under pull-backs/tensor products.
Admissible metrics on OX “factor through the reduction graph”.
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p-adic adelic-metrics and Qp-valued heights

Definition: An p-adic adelic metric on a line bundle L on a
projective variety X/K is a collection of metrics

{νv on Lv/Xv/Kv : ν - p a place of K} ∪ {logLv : v | p}.

such that νv is Q-valued for every v - p and in addition a
model-metric for almost every place v .

Definition: The p-adic height function h associated to a p-adic
adelic metric on a line bundle L on X as above is

h : X (K )→ Qp

x 7→
∑
v -p

νv (s(x))χv (πv ) +
∑
v |p

logL(s(x)),

for some choice of section s ∈ L×x .
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Quadratic Chabauty wishlist + p-adic adelic metrics

Want:

1 A p-adic adelic metric such that the associated height
function h is a quadratic function on J(K ).

2 For all v - p, we want the pull-back of hv to X (K ) under
Abel-Jacobi map i to take on finitely many values.

3 Want h − hp to be a locally non-constant Coleman function.

Solution:
Choose a p-adic adelic metric h on L ∈ Pic(J) such that

1 h is a canonical p-adic adelic metric on L.

2 i∗(L) ∼= OX ⇒ i∗hv is an admissible metric on OX .

3 [L] is nonzero in NS(J).
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Canonical metrics on line bundles on abelian varieties
A new construction [Besser-Mueller-S]

Step 1: Suffices to canonically metrize the Poincare bundle.

Any line bundle on A can be written as a pull-back of the Poincare
bundle. Metrics can be pulled back too.

Step 2: For v | p, exploit non-uniqueness of logP .
Any two metrics for P with the same curvature differ by

∫
ω ⇒

there is a unique metric that makes [2]∗(P) ∼= P⊗4 an isometry.

Step 3: For v - p, use the canonical Q-valued metric from the
canonical R-valued height.
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Local heights away from p using p-adic heights at p
One curvature form to rule them all!

Note: Can relax the assumption that p is a good prime by
replacing Coleman integrals by Vologodsky integrals.

⇒ logL,p =
∫ (
ω
∫
η
)

makes sense even when p is a bad prime.

logL,p is a polynomial in log(p) (defined using the chosen-branch
of the p-adic logarithm).

Let h` = (h`v )v be the canonical Q`-valued height.

Question: Is there any connection between h`p and logL,p =: hpp?

Fun fact: Yes!

Coefficient of log(p) in logL,p at a point equals the value of h`p.
⇒ Curvature controls/unifies the local contributions at all places!
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