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FINITENESS OF REDUCTIONS OF HECKE ORBITS

MARK KISIN, YEUK HAY JOSHUA LAM, ANANTH N.SHANKAR,
AND PADMAVATHI SRINIVASAN

Abstract. We prove two finiteness results for reductions of Hecke orbits of
abelian varieties over local fields: one in the case of supersingular reduction
and one in the case of reductive monodromy. As an application, we show
that only finitely many abelian varieties on a fixed isogeny leaf admit CM
lifts, which in particular implies that in each fixed dimension g only finitely
many supersingular abelian varieties admit CM lifts. Combining this with the
Kuga-Satake construction, we also show that only finitely many supersingular
K3-surfaces admit CM lifts. Our tools include p-adic Hodge theory and group
theoretic techniques.

1. Introduction

Let Ā be an abelian variety over Fp. When Ā is ordinary, then Ā admits a
canonical (CM) lift, and every isogeny from Ā lifts to an isogeny in characteristic
zero with source any fixed lift of Ā. The aim of this paper is to show that the
situation is radically different for supersingular abelian varieties. In fact, we prove
a general theorem for all Newton strata that interpolates between the ordinary case
and the supersingluar case.

The first example of an abelian variety over Fp without a CM lift was given by
Oort in [Oor92]. Further examples of such abelian varieties, including supersingular
abelian varieties, were then constructed by Conrad, Chai and Oort in [CCO14]. We
prove that such examples are in fact quite abundant.

Theorem 1.1. Only finitely many supersingular abelian varieties of a given di-
mension admit CM lifts.

Combining this with a refined analysis of the Kuga-Satake construction, we are
able to answer a question of Ito-Ito-Koshikawa [IIK18, Remark 1.3]

Theorem 1.2. If p ≥ 5, then only finitely many supersingular K3-surfaces over
Fp admit CM lifts.

We remark that the theorem above makes no mention of polarizations, so does
not simply follow from the Kuga-Satake map for integral models of Shimura vari-
eties. It instead requires an analysis of a Kuga-Satake construction at the level of
p-divisible groups due to Yang [Yan19].

Our results for general Newton strata use the notion of central leaves introduced
by Oort in [Oor04, Theorem 5.3]. The central leaf through Ā is a closed subvariety
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inside its Newton stratum, and essentially consists of all abelian varieties whose p-
divisible group is geometrically isomorphic to that of Ā. In [Oor09, Section 5], Oort
computes the dimensions of central leaves and shows that they are 0-dimensional
in the supersingular stratum, and equal the entire Newton stratum in the ordinary
case.

Theorem 1.3. Let W be a Newton stratum in the moduli space of principally
polarized abelian varieties in characteristic p. The set of points of W admitting
CM lifts is contained in a finite union of central leaves.

Let A be an abelian variety over a field K, with algebraic closure K̄. By the Hecke
orbit of an abelian variety A, we mean the set of isomorphism classes of abelian
varieties over K̄, which are isogenous to AK̄ . If A is defined over a local field, and
has good reduction Ā, then the image of the Hecke orbit of A in the Hecke orbit
of Ā is called the reduction of the former. We prove the following result, which is
in stark contrast to the ordinary case. This is the key input for proving the CM
lifting theorems stated earlier.

Theorem 1.4. Let A be an abelian variety over a characteristic zero local field,
and suppose A has good supersingular reduction. Then the reduction of its Hecke
orbit is finite.

This theorem answers a question posed by Poonen in an unpublished preprint,
and also makes progress towards understanding the p-adic distribution of Hecke
orbits. The proof of Theorem 1.4 is entirely local, and we prove an analogous
theorem in the setting of p-divisible groups first.

Now suppose that K is a characteristic zero local field with ring of integers OK

and residue field k. For a p-divisible group G over OK , we define the Hecke orbit
of G and its reduction in the same way as above. In particular, the reduction is a
collection of isomorphism classes of p-divisible groups over an algebraic closure of
k. We also establish a finiteness theorem under a semisimplicity hypothesis on the
p-adic Galois representation.

Theorem 1.5 (Theorem 2.13). Let G denote a p-divisible group over OK , such that
the p-adic Galois representation associated to G is semisimple. Then the reduction
of the Hecke orbit of G is finite.

In light of Theorem 1.4 and Theorem 1.5, we make the following conjecture.

Conjecture 1.6. For any p-divisible group G over OK , the reduction of its Hecke
orbit is finite.

By Theorem 1.1 and Theorem 1.5, we know that Conjecture 1.6 holds in the
case of supersingular reduction (without any semisimplicity conditions on the Ga-
lois representation), and in the case that the Galois representation is semisimple
(without any condition on the Newton polygon of G ). We remark that unlike the
situation in characteristic zero the Hecke orbit of Ā can contain positive dimen-
sional families1. This was first observed by Moret-Bailly [MB81], who constructed
a complete family of supersingular abelian surfaces over P1

Fp
, such that all fibers

are p-isogenous.

1This always happens unless the p-rank of the g-dimensional abelian variety is equal to g or
g − 1.
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Outline of the paper: In § 2, we prove our results on finiteness of reductions
of Hecke orbits. This is done using a Galois-theoretic result which relies on work of
Sen and Serre. We apply this in § 3 to show the results on CM lifts of p-divisible
groups and abelian varieties. Here we make crucial use of Oort’s results on central
leaves. Finally in § 4, we prove the finiteness result for CM lifts of supersingular
K3 surfaces, by comparing the deformation theory of K3’s with that of GSpin
p-divisible groups.
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2. Finiteness for reductions of Hecke orbits

2.1. Let K be a field equipped with a rank 1 valuation. Throughout the paper,
we will denote by OK the ring of integers of K. Fix an algebraic closure K̄ of K.
We denote by GK = Gal(K̄/K) the absolute Galois group of K, and by IK ⊂ GK

the inertia subgroup.
In this section we suppose that K is a finite extension of Qp. We write F̄p for

the residue field of K̄. We denote by Q̆p the maximal unramified extension of Qp,

and by K̆ the compositum of K and Q̆p.

2.2. Let G /OK denote a p-divisible group. Denote by TpG the p-adic Tate module
of G , and let ρ = ρG : GK → GL(TpG ) be the Galois representation associated
to G . We denote by G (resp. H) the Zariski closure of ρ(GK) (resp. ρ(IK)) in
GL(TpG [1/p]). Note that, since ρ(IK) is normal in ρ(GK), H is normal in G.

Lemma 2.3. We have [G : H ] <∞ if and only if [ρ(GK) : ρ(IK)] <∞.

Proof. If ρ(GK) = ∪g∈Sgρ(IK) for some finite set S, then ∪g∈SgH is a closed
set containing ρ(GK) and hence equals G. This shows that [G : H ] is finite if
[ρ(GK) : ρ(IK)] is.

For the other direction, suppose that [G : H ] <∞. By a Theorem of Sen ([Sen73,
Theorem 2]) and Serre ([Ser79, Theorem 1]), ρ(IK) is open in H(Qp), and hence in
G(Qp), as H(Qp) has finite index in G(Qp). In particular, this implies that ρ(IK)
is open in ρ(GK) ⊂ G(Qp). Since ρ(GK) is compact, this implies ρ(GK)/ρ(IK) is
discrete and compact, hence finite. �

Definition 2.4. We say that two p-divisible groups over a finite field Fq are equiv-

alent if they become isomorphic over Fp.

Lemma 2.5. For any h ≥ 1, the set of equivalence classes of p-divisible groups
over Fq of height h is finite.

Proof. By a result of Oort [Oor04, Corollary 1.7], there is an integer n = n(h) such
that any two p-divisible groups over Fp of height h, are isomorphic if and only if
their pn-torsion subgroups are isomorphic. In particular, the equivalence class of a
p-divisible group H over Fq of height h is determined by its pn-torsion subgroup
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H [pn]. Since H [pn] is a finite flat group scheme over Fq of order pnh, there are
only finitely many possibilities for H [pn], and the lemma follows. �

2.6. Let J(G ) denote the set of isomorphism classes of p-divisible groups over OK̄

which are isogenous to G ⊗OK
OK̄ . We set

J(G ,Fp) := {G ′ ⊗OK′
F̄p | G

′ ∈ J(G )},

the set of isomorphism classes of reductions of elements of J(G ).
Analogously, we denote by I(A) the Hecke orbit of A, namely the set isomor-

phisms of abelian varieties over OK̄ which are isogenous to A ⊗OK
OK̄ . We then

define
I(A,Fp) := {A′ ⊗OK′

F̄p | A′ ∈ I(A)},

the reduction of the Hecke orbit of A.
We now give a Galois-theoretic criterion for the finiteness of J(G ,Fp)

Proposition 2.7. If [G : H ] <∞, then J(G ,Fp) is a finite set.

Proof. By Lemma 2.3, our hypothesis implies that ρ(IK) has finite index in ρ(GK).
Therefore, after replacing K by a finite extension if necessary, we may assume
that ρ(IK) = ρ(GK). Let Kρ the splitting field of ρ, namely the Galois extension
defined by the subgroup Ker(ρ). Since ρ(IK) = ρ(GK), Kρ/K is a totally ramified
extension.

Note that any isogeny of p-divisible groups with source G can be defined over
Kρ. Hence if G

′ is in J(G ), then G
′ has a representative (again denoted G

′) which is
defined over Kρ. Since Kρ/K is totally ramified, the reduction G ′⊗OK̄

F̄p is defined

over the residue field of K, namely Fq. The finiteness of J(G , F̄p) now follows from
Proposition 2.5. �

2.8. We will apply Proposition 2.7 in two cases. To explain the first of these,
recall that for a p-divisible group H over Fq, its Dieudonné module D(H ) is a
finite free W (Fq)-module equipped with a semi-linear Frobenius ϕ. If q = pr, then
ϕr acts linearly on D(H ), and we call this action the q-Frobenius Frobq on D(H ).
Following Rappoport-Zink [RZ96], we say that H is decent if the action of Frobq
on D(H ) is semisimple with eigenvalues which are all rational powers of q. That
latter condition means that for each eigenvalue α, αm = qn for some integers m,n.

The semisimplicity condition is always satisfied if H = B[p∞] is the p-divisible
group arising from an abelian variety B over Fq. Examples of a decent p-divisible
groups include those of the form H = B[p∞] with B a supersingular abelian variety
B over Fq.

Proposition 2.9. If H = G ⊗OK
Fq is decent then [G : H ] is finite.

Proof. Let RepG denote the Qp-linear Tannakian category of algebraic representa-
tions of G, and IsocQp

the Tannakian category of isocrystals over K0, the maximal
absolutely unramified subfield of K. As for D(H ), Frobq := ϕr acting on IsocQp

is
linear. Using Fontaine’s functor Dcris, the representation ρ : GK → G(Qp), gives
rise to a functor

Dcris : RepG → IsocQp
w 7→ Dcris(w ◦ ρ).

This functor sends V = (TpG [1/p])∗ to D[1/p], where D = D(H ).
Now let W be a faithful representation of G/H, viewed as a representation of

G, and write w : G→ GL(W ). Then ρ ◦w is an unramified representation, so that
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the eigenvalues of Frobq acting on Dcris(W ) are p-adic units. Since W is in the
Tannakian category generated by V , it follows that Dcris(W ) is in the Tannakian
category generated by D[1/p]. Hence Frobq acting on Dcris(W ) is semi-simple and

each of its eigenvalues have the form
∏n

i=1 α
di

i , where α1, · · · , αn are the eigenvalues
of Frobq on Dcris(V ). In particular any eigenvalue α of Frobq acting on Dcris(W )
is a rational power of q. Since α is also a p-adic unit, it follows that α is a root of
unity.

It follows that Frobq acting on Dcris(W ) has finite order. This implies that for
some power q′ of q, W, viewed as a representation of GK/IK , can be identified with
(Dcris(W )⊗W (Fq′))

ϕ=1, with GK/IK acting via its action onW (Fq′). In particular,
we see that GK/IK acts on W through a finite quotient. Since ρ(GK) is dense in
G, it is dense in the image of G in GL(W ), and hence this image is finite. As W
was a faithful representation of G/H, this proves the proposition. �

Corollary 2.10. If H = G ⊗OK
Fq is decent, then J(G ,Fp) is a finite set. If mo-

roever G = A[p∞] for an abelian scheme A over OK with supersingular reduction,
then I(G ,Fp) is a finite set.

Proof. The first statement follows immediately Proposition 2.9 and Proposition 2.7.
For the second statement, as the special fiber of A is supersingular, we may

replace K by a finite extension so that the Galois action on the prime-to-p torsion
of A is through scalars (with Frobenius mapping to the scalar q1/2 where q is the
size of the residue field of K). Further, we observe that A[p∞]⊗OK

Fq is decent as
A has supersingular reduction, and hence the hypothesis of Proposition 2.7 holds.
Let Kρ be as in the proof of Proposition 2.7. We have that every isogeny from A
is defined over Kρ and hence all A′ isogenous to A have reductions defined over
Fq, the residue field of K. By Zarhin’s trick [Zar77, Theorem 4.1] there are only

finitely many isomorphism classes of abelian varieties over Fq, and hence I(A,Fp)
is a finite set. �

2.11. Our second application of Proposition 2.7 is more indirect, and proceeds by
showing that even if G does not satisfy the hypothesis of Proposition 2.7 one can
sometimes construct an auxiliary p-divisible group which does.

Lemma 2.12. Suppose that the connected component of the identity in G is reduc-
tive. Then after replacing K by a finite extension, there exists a p-divisible group
G ′/OK such that

(1) G and G ′ are isomorphic over OK̆

(2) If G′ (resp. H ′) denotes the Zariski closure of the image of GK (resp. IK)
in GL(TpG

′[1/p]), then G′ = H ′.

Proof. After replacing K by a finite extension, we may assume that G is reductive,
and we set T = G/H. As T is abelian, it is a torus. Let ZG denote the center of G,
and Gder its derived subgroup. The map ZG × Gder → G is surjective with finite
kernel, so we obtain a surjective map ZG → T. This implies that there is a subtorus
Tsub ⊂ ZG, such that the map Tsub → T is an isogeny.

Let χ : GK → T (Qp) be the map induced by ρ, and let σ ∈ GK be a lift of
the q-Frobenius. For some positive integer m, τ = χ(σm) lifts to an element of
Tsub(Qp). Thus after replacing K by a finite extension, we may assume that τ lifts
to an element τ ′ ∈ Tsub(Qp). Since Tsub → T is an isogeny, the subgroup generated
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by τ ′ is bounded, so there is an unramified Galois character of the form

ψ : GK → GK/IK → Tsub(Qp); σ 7→ τ ′

Now let C ⊂ ZG(Qp) denote the subgroup preserving TpG . After replacing K by a
finite extension, and so τ ′ by a power, we may assume that τ ′ ∈ C.

The action of C on TpG commutes with the action of GK . Hence by Tate’s
theorem, it induces a map C → AutG . Since G is defined over OK , for any γ ∈
GK/IK , we have a canonical isomorphism γ∗G ≃ G over OK̆ . Denote by cγ the
composite of this isomorphism and the automorphism ψ(γ)−1 ∈ C viewed as an
automorphism of G (here we view ψ as a character on GK/IK). Then cγ defines a
descent datum on G [pn]|O

K̆
, for each n. By étale descent, cγ arises from a unique

p-divisible group G ′ over OK .
By construction, the underlying Zp-modules of TpG and TpG

′ are canonically
identified, and the action of GK on G ′ is obtained by multiplying its action on TpG
by ψ(σ)−1. Hence we have H = H ′ ⊂ G′ ⊂ G, and the map G′ → T is trivial. It
follows that G′ = H ′. �

Corollary 2.13. If the p-adic Galois representation associated to G is semisimple,
then the set J(G ,Fp) is finite.

Proof. By Lemma 2.12 we can find G ′ such that H ′ = G′. By Proposition 2.7
J(G ′,Fp) is a finite set. On the other hand the two p-divisible groups G and G ′ are

isomorphic over K̆ and therefore J(G ,Fp) = J(G ′,Fp). �

3. Finiteness of p-divisible groups admitting a CM lift

3.1. In this section we assume that K is a finite extension of K0 =W (F̄p)[1/p].
A p-divisible group G of (constant) height h, over any base, is said to have CM

by a commutative semisimple Qp-algebra F if there is an injective homomorphism

F →֒ End(G )⊗Q,

such that dimQp
F = height(G ). We say that G is CM, or has CM if G has CM by

some F as above.
If G is a p-divisible group over OK , we can form its formal group Ĝ . If G has

CM by F, then Lie Ĝ ⊗OK
K̄ ≃ ⊕σVσ where σ runs over Qp-algebra maps F → K̄,

and for a ∈ F, we have aVσ = σ(a)Vσ . For each σ, the summand Vσ is either trivial,
or one dimensional over K̄ [CCO14, Lemma 3.7.1.3]. We denote by Φ the set of σ
for which Vσ is one dimensional, and we call Φ the CM type of G .

Lemma 3.2. Let G be a p-divisible group over OK with CM by F. Then there exists
a finite extension K ′/Qp contained in K, and a p-divisible group G ′ over OK′ with
CM by F such that G ′ ⊗OK′

OK is F -linearly isomorphic to G .

Proof. This is well known. Let D be the weakly admissible module Dcris(TpG [1/p]),
so that D is an F ⊗Qp

K0-module equipped with an injective, semi-linear Frobenius

and a one step filtration Fil1DK ⊂ DK = D ⊗K0
K by an F ⊗Qp

K0-submodule.
The filtration on DK is induced by a cocharacter µ ∈ X∗(ResF/Qp

Gm). Choose
K ′/Qp finite and contained in K, such that µ is defined over K ′, and let K ′

0 denote
the maximal unramified subfield of K ′. Then there exists a free F ⊗Qp

K ′
0-module

D′, an F ⊗Qp
K ′-submodule Fil1D′

K′ ⊂ D′
K′ = D′ ⊗K ′, and an F -linear isomor-

phism ι : D′ ⊗K′

0
K0 ≃ D, respecting filtrations.
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Now identify D′ with F ⊗Qp
K ′

0. Then we can identify D with F ⊗Qp
K0 via

ι, and the Frobenius on D given by δσ, where δ ∈ (F ⊗Qp
K0)

× and σ denotes
the Frobenius on K0. After possibly replacing K ′ by a larger field, there exists
δ′ ∈ (F ⊗Qp

K ′
0)

× such that δ′δ−1 is unit. We equip D′ with the Frobenius δ′σ.

As δ′δ−1 is a unit there exists c ∈ (F ⊗Qp
K0)

× such that δ′ = c−1δσ(c). Then
c · ι respects Frobenius, and also respects filtrations as ι does. D′ along with the
Frobenius δ′σ and filtration Fil1D′

K′ ⊂ D′
K′ is a weakly admissible module as D

is. This weakly admissible module equals Dcris(TpG
′[1/p]) where G ′/OK′ is a p-

divisible group, for example by [Kis06]. The isomorphism D′
K0

≃ DK0
induces a

quasi-isogeny between the Tate-modules of G ′ and G as Gal(K̄/K)-representations,
and hence (after multiplication by a power of p) an isogeny G ′

OK
→ G . After

replacing K ′ by a finite extension, we may assume that the kernel of this isogeny
is defined over OK′ and the theorem follows. �

3.3. Let H be a p-divisible group over F̄p. We say that H admits a CM lift, if
there exists a finite extension K/W (F̄p)[1/p], and a CM p-divisible group G over
OK , such that G ⊗OK

F̄p is isomorphic to H .
We remark that there is essentially no extra generality gained by considering

CM lifts to more general base rings. More precisely, if R is an integral, normal,
flat W (F̄p)-algebra, and G is a CM deformation of H to R, then there is a finite
extension K/W (F̄p)[1/p], and an inclusion OK → R, such that G arises from a
CM deformation of H over OK . This can be deduced from the fact that the rigid
analytic period morphism in [RZ96, §5] is étale, together with the fact that any
F ⊗W (F̄p) R-direct summand of the free, rank 1 F ⊗W (F̄p) R-module D(G )(R) is
defined over F ⊗W (F̄p) OK , for some OK ⊂ R, as above.

Theorem 3.4. Let H /F̄p be a p-divisible group. Then, the isogeny class of H

contains only finitely many isomorphism classes of p-divisible groups which admit
a CM lift.

Proof. Since the algebra End(H )⊗Q has finite dimension over Qp, there are only
finitely many choices for the CM algebra F. Given F, there are only finitely many
choices for the CM type Φ. Thus, we may fix F and Φ, and consider only p-divisible
groups in the isogeny class of H , which admit a CM lift having CM by F and CM
type Φ.

Let G ,G1 be such lifts, defined over some finite extension K/W (F̄p)[1/p]. By
Lemma 3.2, there exists a p-divisible group G ′ with CM by F, defined over a finite
extension K ′/Qp such that G ′ ⊗OK′

OK ≃ G . Since G1 and G have the same CM
type, there is an F -linear isogeny G → G1, by [CCO14, Proposition 3.7.4]. Thus
G1 ∈ J(G ′).

Now the Zariski closure of the image of GK′ acting on TpG
′ is a closed subgroup

of the torus ResF/Qp
Gm, hence is reductive. Hence J(G ′, F̄p) is finite by Theorem

2.13, and the theorem follows. �

3.5. Let Ag denote the moduli space of principally polarized abelian varieties
of dimension g. For a given Newton polygon ν we denote by Wν ⊂ Ag,F̄p

the
corresponding Newton stratum. It is a locally closed subscheme.

For any x ∈ Ag(F̄p), the associated p-divisible group Gx carries a principal po-
larization, an isomorphism, ψx, of Gx and its Cartier dual. The polarized central
leaf through a point x ∈ Ag is the locus of points where the associated polarized
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p-divisible group is geometrically isomorphic to the polarized p-divisible group pa-
rameterized by x. Oort [Oor04, Theorem 5.3] has shown that this locus is a closed
subvariety of the Newton stratum through x.

Theorem 3.6. Let S be the set of points in Wν which admit CM lifts. Then S is
contained in a finite number of central leaves.

Proof. Let n denote some large enough integer, such that Ag[n], the moduli space
of principally polarized g-dimensional abelian varieties with full symplectic level n
structure, is a fine moduli space. The notion of a polarized central leaf in Ag[n]
through any point is defined exactly as in the case of Ag, and without any reference
to level structure. Then, the result for Ag follows directly from the result for Ag[n].

Let x ∈ Wν(Fp) ⊂ Ag[n](F̄p), and let Hx and Ax be the associated principally
polarized p-divisible group and abelian scheme, respectively. By [Oor04, Theorem
2.2], the set of points y ∈ Ag[n] with Hy isomorphic to Hx (as unpolarized p-
divisible groups) is a closed subvariety of Wν . By [Oor04, Theorem 3.3], this closed
subvariety is a union of finitely many central leaves2 in Wν . The result now follows
immediately from Theorem 3.4. �

Corollary 3.7. There are only finitely many supersingular principally polarized
abelian varieties of dimension g, which admit a CM lift.

Proof. This follows from Theorem 3.6, and the fact that central leaves in the su-
persingular stratum are zero-dimensional ([Oor09, Section 5]). �

4. CM lifts of supersingular K3-surfaces

In this section we deduce Theorem 1.2 for CM lifts of K3-surfaces when p ≥ 5.
The weaker statement for polarized K3-surfaces is an immediate consequence of
Theorem 3.6 and the theory of integral models of Shimura varieties [MP15]. Here
we prove the stronger result for K3-surfaces with no reference to polarizations.
The main inputs will be the Kuga-Satake construction for K3-crystals (without
any reference to polarizations) due to Yang, and the crystalline Torelli theorem,
due to Ogus.

4.1. Let R be a p-adically complete and separated, p-torsion free ring. Suppose
that R is equipped with a lift of Frobenius σ. For i ≥ 0, we denote by R(i), the
R-module R, equipped with a Frobenius ϕ = pi · σ, and a filtration given by where
Fil2R(2) = R(2), and Fil3R(2) = 0.

AK3-crystal overR ([cf. [Ogu79, Definition 3.1]) is a free R-module L of rank 22,
endowed with a Frobenius-linear endomormophism ϕ : L → L and a ϕ-compatible,
perfect, symmetric bilinear form 〈·, ·〉 : L× L → R(2) satisfying:

(a) p2L ⊂ ϕ(L).
(b) The image of ϕ⊗R R/pR is projective of rank 1.

When R =W (k) for a perfect field k, we also call this a K3-crystal over k.
A filtered K3-crystal over R is a K3-crystal L over R, equipped with a filtration

0 = Fil3 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = L such that gr•L is a projective R-module and the
following conditions hold

(c) 〈·, ·〉 : L⊗ L → R(2) is strictly compatible with filtrations.

2Both of Oort’s results are stated in the setting of families of p-divisible groups, which is the
only reason we need to work with Ag [n] instead of Ag .
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(d) Fil1L⊗R R/pR is the kernel of ϕ on L⊗R R/R.

Note that these conditions imply that Fil1 = Fil2
⊥
, that ϕ(Fil2L) ⊂ p2L, and

that for i = 0, 1, 2, griL has rank 1, 20, 1 respectively.

4.2. Now suppose that R = W (k) with k a perfect field, which will be either F̄p

or a finite field in application.
A K3-crystal L over k is said to be supersingular, if the slopes of ϕ are all 1. If

L is supersingular, and k is algebraically closed, then Lϕ=p is a free Zp-module of
rank 22 ([Ogu79, Theorem 3.3]), which also admits a bilinear form (which will no
longer be perfect).

If k = Fq is a finite field, then we say a K3-crystal L over k is decent if the
q-Frobenius on L has eigenvalues which are rational powers of q. We note that this
implies the Zp-module Lϕ=p ⊂ L has rank 22. Note that every K3-crystal over Fp

admits a decent model over Fq for some q, see [Kot85, §4.3]

Lemma 4.3. Let L be a filtered K3-crystal over R, as above. Then the filtration
on L is induced by a cocharacter µ : Gm → GO(L, 〈·, ·〉). In particular, the subgroup
P ⊂ GO(L, 〈·, ·〉) preserving the filtration is parabolic.

Proof. Let L2 = Fil2L, and choose a submodule L1 ⊂ Fil1 so that Fil1L = L2⊕L1.
Then (L1)⊥ is free of rank 2 and surjects on gr0L, as 〈·, ·〉 is perfect and strict for
filtrations. Thus, we can choose a rank 1 direct summand L0 ⊂ (L1)⊥ which maps
isomorphically to gr0L. Then 〈·, ·〉 induces a perfect pairing between the rank 1
subspaces L0,L2 ⊂ (L1)⊥. Thus, modifying L0 ⊂ (L1)⊥ we may assume that L0 is
isotropic for 〈·, ·〉.

Now L = L2⊕L1⊕L0, and we define µ by requiring that µ(z) by zi on Li. Since
Li and Lj are orthogonal for i + j 6= 2, µ(z) acts on 〈·, ·〉 by z2. In particular µ
factors through GO(L, 〈·, ·〉). �

4.4. Now let k be a perfect field of characteristic p, which is either algebraically
closed or an algebraic extension of Fp. Let X/k denote a K3-surface. It is well
known that the deformation functor of X is smooth and pro-representable and
formally smooth of dimension 20 over W =W (k). Let Spf R̂X denote the universal

deformation space of X , and let Xu π
−→ Spf R̂ denote the universal deformation of

X . Choose a set {p, x1 . . . x20} of elements that generate the maximal ideal of R̂X ;

define σ to be the lift of the Frobenius endomorphism of R̂X mod p such that σ is
the usual Frobenius on W (Fq), and σ(xi) = (xi)

p.

Then Lu = R2f∗π is a filtered K3-crystal over R̂X . To give a more explicit
description of this filtered K3-crystal, we need the following

Lemma 4.5. Let L be the K3-crystal attached to X. There exists a free Zp-module
with quadratic form (T, 〈·, ·〉′) and an isomorphism ι : (T, 〈·, ·〉′)⊗Zp

W → (L, 〈·, ·〉).

Proof. The bilinear form on L is self dual. It follows from the theory of non-
degenerate bilinear forms over finite fields that after replacing k by at most a
quadratic extension, (L, 〈·, ·〉) has determinant a square and also admits a rank-11
isotropic subspace. Indeed, there is a unique quadratic form on L (up to iso-
morphism) that satisfies these conditions, whence it follows that (T, 〈·, ·〉′)Zp

⊗W is
isomorphic to (L, 〈·, ·〉) where T is a rank-22 free Zp-module, and 〈·, ·〉′ is the unique
self-dual quadratic form on T that has square determinant and admits a rank-11
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isotropic subspace. This weaker statement (namely, after replacing k with a qua-
dratic extension) will actually be enough for our applications, so we only sketch the
proof of the full statement of the lemma.

Choose a lift X̃ ofX to a smooth formal scheme overW. We will apply the theory

of prismatic cohomology [BS19] to X̃, using the map S = W [[u]]
u7→0
→ W, where S

is equipped with the Frobenius which sends u to up; this is an example of a prism.
We obtain a finite free S-module M, equipped with a semi-linear Frobenius, and a
bilinear pairing 〈·, ·〉M such that

(1) (M, 〈·, ·〉M)⊗S W ≃ (L, 〈·, ·〉).
(2) There is a faithfully flat S(p) algebra A and an isomorphism

(M, 〈·, ·〉M)⊗S A ≃ (H2(X̃K̄ ,Zp), 〈·, ·〉) ⊗Zp
A

where K̄ is an algebraic closure of W [1/p], and H2(X̃K̄ ,Zp) is equipped
with a perfect symmetric bilinear form, using Poincare duality.

Then by the Key Lemma of [Kis10, Prop. 1.3.4], one finds that there exists an
isomorphism

(L, 〈·, ·〉) ≃ (H2(X̃K̄ ,Zp), 〈·, ·〉) ⊗W.

�

4.6. Let n ∈ Spec R̂X be the kernel of R̂X → W sending the xi to 0, and let
L0 = Lu ⊗R̂X

W be the corresponding filtered K3-crystal over W. The underlying
K3-crystal of L0 is canonically identified with L.

Fix an isomorphism as in Lemma 4.5. This allows us to regardGO = GO(L, 〈·, ·〉),

as a group over Zp. Choose an isomorphism j : (Lu, 〈·, ·〉) ≃ (L, 〈·, ·〉) ⊗ R̂X

inducing the identity mod n. This gives rise to an isomorphism GO(Lu, 〈·, ·〉) ≃

GO(L, 〈·, ·〉) ⊗ R̂X , and the Frobenius maps on Lu and L0 then are given by buσ

and bσ for elements bu ∈ GO(R̂X [1/p]) and b ∈ GO(W [1/p]) such that bu specializes
to b.

Proposition 4.7. The isomorphism (Lu, 〈·, ·〉) ≃ (L, 〈·, ·〉) ⊗ R̂X can be chosen so
that

(1) j respects filtrations.

(2) bu = u · b where u ∈ Uopp(R̂X), and Uopp is the opposite unipotent of the
parabolic P ⊂ GO(Lu, 〈·, ·〉) corresponding to the filtration on Lu.

Moreover, if these conditions are satisfied, the tautological map Spf R̂X
u
−→ Ûopp is

an isomorphism.

Proof. To show (1), we have to show that j can be chosen so that the parabolics
P ⊂ GO(Lu, 〈·, ·〉) and P0 ⊂ GO(L0, 〈·, ·〉) corresponding to the filtrations on Lu

and L0 are identified. This follows from that fact that any deformation of P0 to
a parabolic in GO(Lu, 〈·, ·〉) is conjugate to the constant deformation [GP11]. The

choice of such a j is unique up to conjugation by elements of P (R̂X).
Next let µ : Gm → GO be a cocharacter corresponding to P. We claim that

bu ∈ SO(R̂X)σ(µ)(p). Let

L′
u = (buσ)µ(p

−1)Lu = buσ(µ)(p
−1)Lu.

The conditions on the filtration in a filtered K3-crystal imply that L′
u ⊂ Lu, and

that µ(p−1) acts by p−2 on 〈·, ·〉. Thus for x, y ∈ Lu we have

〈(buσ)µ(p
−1)x, (buσ)µ(p

−1)y〉 = p2σ(〈µ(p−1)x, µ(p−1)y〉) = σ(〈x, y〉).
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It follows that 〈·, ·〉 is perfect on L′
u, and hence L′

u = Lu. This proves the claim.

It follows that w = bub
−1 ∈ SO(R̂X). Since the map Uopp → P0\GO(L0, 〈·, ·〉)

is an open immersion, and w is the identity mod n, we can write w = λ · u with

u ∈ Uopp(R̂X) and λ ∈ P (R̂X) both reducing to 1 mod n. Conjugating j by an

element of P (R̂X) has the effect of replacing bu = λub by its σ-conjugate by the same
element. Now let m ≥ 1, and suppose that j can be chosen so that bu = bu(m) = ub
modulo n

m, so that λ = λ(m) ≡ 1 mod n
m. Then,

λ−1buσ(λ) = ubσ(λ) = u(bσ(λ)b−1)b.

Since λ ≡ 1 mod n
n, σ(λ) ≡ 1 mod n

pm, and hence bu(m+1) = λ−1bu(m)σ(λ) ≡
ub mod n

pm. This shows that ub is the σ-conjugate of bu(1) by the convergent
product . . . λ(2)λ(1), so j can be chosen with bu = ub.

It remains to show that the map u : Spf R̂X
u
−→ Ûopp is an isomorphism. Given

that these are both smooth 20-dimensional formal schemes over W , it suffices to
prove this modulo the ideal (p,m2). Now let S = R̂X/(p,m

2), and let LS denote
filtered K3-crystal over S given by Lu|S . After, modifying our chosen isomorphism
j by u, LS may be identified with

(L⊗ S, u−1ubσ(u), u · (Fil•L)S , 〈·, ·〉) = (L⊗ S, b, u · (Fil•L)S , 〈·, ·〉)

where we have used that σ(u) = 1 in S.
Work of Nygaard-Ogus [NO85, Theorem 5.2, 5.3] implies that deformations of

X to S correspond bijectively to isotropic lifts of Fil2L mod m. These lifts are in
bijection with points of Uopp(S) which are 1 modulo m, and hence with Ûopp(S).
This implies that u induces an isomorphism on S points, and hence is an isomor-
phism. �

4.8. Let H denote the Clifford module associated to (T, 〈·, ·〉′), and let {sα,p}α ⊂
H⊗ denote tensors whose pointwise stabilizer is the group GSpin (such tensors exist
by [Kis10, Proposition 1.3.2]) of Spinor similitudes associated to (T, 〈·, ·〉′).

Definition 4.9. A GSpin-structure on a p-divisible group H /k is the data of an
isomorphism ι : H ⊗W (k) → D(H ), such that ι(sα,p) ∈ D(H )⊗ are Frobenius-
invariant. We say that ι1 and ι2 are isomorphic GSpin-structures if ι1(sα,p) =
ι2(sα,p).

4.10. We now recall a Kuga-Satake construction for K3-crystals due to Yang
[Yan19, Appendix A], which associates a p-divisible group with GSpin structure
to a K3-crystal.

Denote by H the Clifford module associated to (L, 〈·, ·〉). The isomorphism ι
induces a canonical isomorphism of Clifford modules H ⊗W (k) → H (where H is
as in Section 4.8), which we shall also denote by ι.

Let µ be as in the proof of Proposition 4.7: a GO(L)-valued co-character, defined
over W (k), that induces the mod p filtration on L. Let µSO denote the co-character
of SO given by µSO(z) = z−1µ(z). The natural map

GSpin(H) → SO(L)

has kernel Gm, and there is a unique lift of µSO to a cocharacter µ̃ of GSpin(H)
such that µ̃ acts with weights 0 and 1 on H. Both weights then occur with equal
multiplicity. We saw in the proof of Proposition 4.7 that b ∈ GO(W (k))σ(µ)(p).

Hence p−1b ∈ SO(W (k))σ(µSO)(p), and we may lift p−1b to an element b̃ ∈

GSpin(H)(W (k))σ(µ̃)(p). Then b̃H ⊂ H, and b̃H 6⊂ pH.
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Proposition 4.11 ([Yan19, Lemma A.7]). There exists a p-divisible group H over

k whose Dieudonné module D(H ) is given by H, with Frobenius acting as b̃σ.

4.12. By [HP17, Section 4.2.1], if X is supersingular, then H is a supersingular

p-divisible group. Since b̃ ∈ GSpin(W [1/p]), the tensors sα,0 = ι(sα,p) ∈ H⊗ are
stable by Frobenius, and therefore H is equipped with a canonical GSpin-structure.

We will now use description of the universal deformation space of X to prove
that H admits a CM lift if X does. Write R̂ = R̂X . The opposite unipotent of µ̃
in GSpin is canonically isomorphic to Uopp, the opposite unipotent of µSO in SO.
Thus, we may regard u ∈ Uopp(R̂) as an endomorphism of H⊗ R̂.

Let F̃il ⊂ H denote the filtration of H induced by µ̃. By [Kis10, Section 1.5], the

data (H ⊗ R̂, F̃il ⊗ R̂, u · (b̃σ)) arises from the Dieudonné module of a p-divisible

group HR̂ over Spf R̂, which deforms H . Note that the tensors sα,0 ∈ D(HR̂)
⊗ are

Frobenius invariant and in F̃il
0
.

Lemma 4.13. Let K/W (k)[1/p] be a finite extension, y : R̂ → OK , a map of
W (k)-algebras, and Xy (resp. Hy) the K3 surface (resp. p-divisible group) over
OK corresponding to y. Let D(Xy) (resp. D(Hy)) denote the weakly admissible
module over K associated to Xy (resp. Hy). Then there is a canonical inclusion

D(Xy)(1) ⊂ D(Hy)
⊗

compatible with filtrations and Frobenius.

Proof. The weakly admissible module D(Xy) is constructed using the crystalline
and de Rham cohomology of Xy, and the isomorphism between them as in [BO83,
§2], and similarly for D(Hy). Let us briefly recall the construction.

Let R̂y denote the PD-completion of R̂ with respect to Ker(y) + pR̂. Then

LR̂y
= Lu ⊗R̂ R̂y is equipped with a Frobenius and filtration. Moreover, there is

a unique Frobenius equivariant map L = L0 → LR̂y
[1/p] which lifts the identity

over n. It may be constructed by choosing any lift of the identity s0, and taking
the limit s = limi ϕ

i(s0) = limi ϕ
i ◦ s0 ◦ ϕ

−i, which converges. This allows us to
identify L ⊗W (k) K with Ly[1/p], where Ly = Lu ⊗R̂,y OK . If K0 ⊂ K denotes

the maximal unramified subfield, this gives D(Xy) ∼= L⊗W (k) K0 the structure of
a weakly admissible module over K. Note that this identification is not in general
given by the identity of L. There is an analogous construction starting with HR̂ in
place on Lu.

Now let Lu(1) denote the K3-crystal with underlying module Lu, equipped with

the Frobenius given by p−1buσ, and the filtration given by FiliLu(1) = Fili+1
Lu. By

construction, there is an inclusion Lu(1) ⊂ H⊗

R̂
. Applying the above construction

to both sides, we obtain D(Xy)(1) ⊂ D(Hy)
⊗, as required. �

Proposition 4.14. Suppose that the K3-surface X admits a CM lift. Then so does
the associated Kuga-Satake p-divisible group H .

Proof. Let K,K0 and y : R̂ → OK , be as in the previous lemma, and denote
by G(D(Xy)(1)) and G(D(Hy)) the Tannakian groups of the weakly admissible
modules D(Xy)(1) and D(Hy)

⊗, associated to fiber functor which takes a weakly
admissible module to its underlying K0-vector space. By construction, we have the
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following commutative diagram

G(D(Hy)) //

��

G(D(Xy)(1))

��

GSpin(HK0
) // SO(LK0

(1))

where the vertical maps are the natural inclusions, and the top map is a surjection,
which is deduced from Lemma 4.13. Since the bottom map is surjective, with kernel
Gm, it follows that G(D(Hy)) is abelian if and only if G(D(Xy)(1)) is abelian.

Now suppose that Xy is CM. By what we just saw, it suffices to show that
G(D(Xy)(1)), or equivalently G(D(Xy)), is abelian. If K̄ denotes an algebraic clo-
sure of K, this is equivalent to asking that the Gal(K̄/K) action on H2

ét(Xy,K̄ ,Qp)
is abelian. This follows from work of Deligne [Del72]. �

Theorem 4.15. If p ≥ 5, then only finitely many supersingular K3-surfaces over
Fp admit CM lifts.

Proof. Let S denote the set of supersingular K3-surfaces over Fp that admit CM
lifts. By Proposition 4.14, the Kuga-Satake p-divisible group H (X) associated to
every X ∈ S has a CM lift. Let S ′ denote the set {H (X) : X ∈ S}. Theorem 3.4
implies that S ′ contains only finitely3 many Fp-isomorphism classes of p-divisible
groups, and therefore there exists a finite field Fq such that every H ∈ S ′ admits a
decent model over Fq, (which we will again denote by H /Fq). By Lemma 4.16 be-
low, every GSpin-structure on H is defined over Fq. Since the data of a p-divisible
group H along with a GSpin-structure uniquely determines the K3-crystal, it fol-
lows that the K3-crystal L(X) admits a decent model over Fq for every X ∈ S.

By Ogus’ crystalline Torelli theorem (the main result of [Ogu83]), it suffices to
prove that there are only finitely many isomorphism classes of decent K3-crystals
defined over any fixed finite field Fq. This is a direct consequence of the discussion
in [Ogu79, Section 3, Definition 3.19, Theorem 3.20] pertaining to characteristic
subspaces, and therefore the result follows. �

Lemma 4.16. Let H /Fq denote a decent p-divisible group. Then, every GSpin-
structure on HFp

is defined over Fq.

Proof. Let H = D(H ), and ι : H ⊗W W (Fp) → HW (Fp)
a GSpin-structure on H .

Let sα,0 = ι(sα,p) ∈ H⊗

W (Fp)
. Write ϕ for the Frobenius on H. By definition, the sα,0

are Frobenius-invariant tensors. The assumption that H is decent implies that the
q-power Frobenius acts on H = D(H ) as the scalar q1/2. As sα,0 is ϕ⊗σ-invariant,
it lies in the slope 0 part of HW (Fp)

[1/p]. Hence, if q = pr, then ϕr acts trivially on

sα,0, and so σr acts trivally on sα,0. Hence, sα,0 ∈ H⊗.
Now consider the W (Fq)-scheme that represents the functor, which assigns to

an W (Fq)-algebra R the set of isomorphisms H ⊗ R → H ⊗ R that sends sα,p to
sα,0. This scheme is a GSpinW -torsor as it has a point (given by the isomorphism ι)

defined over W (Fp). As GSpin is a connected reductive group, Lang’s lemma yields
that the torsor must be trivial over W (Fq), and hence there exists an isomorphism

3Corollary 1.2 does not follow immediately – it is a-priori possible that infinitely many non-
isomorphic K3-surfaces X might yield the same Kuga-Satake p-divisible group.
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ιq : H ⊗W (Fq) → H that respects tensors. It follows that the GSpin-structure is
indeed defined over Fq, as claimed 4. �
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