Finiteness theorems for reductions of Hecke orbits

Mark Kisin, Yeuk Hay Joshua Lam, Ananth Shankar, Padmavathi Srinivasan

> JMM 2021 January 8th, 2021

Lifting isogenies and endomorphisms of abelian varieties

- 2 A Galois-theoretic criterion for finiteness of Hecke orbits
- 3 Verifying Galois-theoretic criterion for supersingular \overline{A}
- 4 Applications to CM-lifting theorems

Lifting p-isogenies from characteristic p to characteristic 0

- K: finite extension of \mathbb{Q}_p
- A/K: Abelian variety over K with good reduction
- $\overline{A}/\mathbb{F}_q$: Reduction of A
- $I_p(A): \quad \{B/K' \mid [K':K] < \infty, \ B \text{ is } p\text{-power isogenous to } A\}$
- $\textit{I}_{\textit{p}}(\overline{A}) : \quad \{\overline{B}/\mathbb{F}_{q'} ~|~ [\mathbb{F}_{q'}:\mathbb{F}_{q}] < \infty, ~\overline{B} ~\text{is p-power isogenous to \overline{A}} \}$

Lifting p-isogenies from characteristic p to characteristic 0

- K: finite extension of \mathbb{Q}_p
- A/K: Abelian variety over K with good reduction
- $\overline{A}/\mathbb{F}_q$: Reduction of A

$$I_{\rho}(A)$$
: $\{B/K' \mid [K':K] < \infty, B \text{ is } p\text{-power isogenous to } A\}$

- $\textit{I}_{\textit{p}}(\overline{A}) : \quad \{\overline{B}/\mathbb{F}_{q'} ~|~ [\mathbb{F}_{q'}:\mathbb{F}_{q}] < \infty, ~\overline{B} ~\text{is} ~\textit{p-power isogenous to} ~\overline{A}\}$
- Note: All abelian varieties in $I_p(A)$ also have good reduction. $\overline{I_p(A)} :=$ Reductions of all the abelian varieties in $I_p(A)$.

Lifting p-isogenies from characteristic p to characteristic 0

- K: finite extension of \mathbb{Q}_p
- A/K: Abelian variety over K with good reduction
- $\overline{A}/\mathbb{F}_q$: Reduction of A

$$I_{\rho}(A): \quad \{B/K' \mid [K':K] < \infty, \ B \text{ is } p\text{-power isogenous to } A\}$$

 $\textit{I}_{\textit{p}}(\overline{A}) : \quad \{\overline{B}/\mathbb{F}_{q'} ~|~ [\mathbb{F}_{q'}:\mathbb{F}_{q}] < \infty, ~\overline{B} ~\text{is} ~\textit{p-power isogenous to} ~\overline{A}\}$

Note: All abelian varieties in $I_p(A)$ also have good reduction. $\overline{I_p(A)} :=$ Reductions of all the abelian varieties in $I_p(A)$.

Main Question 1 (Lifting *p*-isogenies): How large is the subset $\overline{I_p(A)}$ of $I_p(\overline{A})$?

Definition

Let A be a g-dimensional abelian variety over a characteristic 0 local field K. We say that A is a CM-abelian variety if there is an embedding

 $F \hookrightarrow \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$

of a commutative, semisimple \mathbb{Q} -algebra F of dimension 2g.

Main Question 2 (Existence of CM-lifts):

For which $\overline{A}/\overline{F_p}$ does there exist a CM-abelian variety A over a characteristic 0 local field with reduction \overline{A} ?

History of lifting problems

- Honda-Tate (Lifting up to isogeny) Every $\overline{A}/\overline{\mathbb{F}_p}$ is isogenous to a $\overline{B}/\overline{\mathbb{F}_p}$ with a CM-lift.
- Serre-Tate (Canonical lifts for *ordinary* abelian varieties) Every ordinary abelian variety $\overline{A}/\overline{\mathbb{F}_p}$ admits a CM-lift A. All isogenies of such \overline{A} lift to isogenies of the canonical lift A.
- Oort/Conrad-Chai-Oort (Non-existence of CM lifts) There are supersingular abelian varieties $\overline{A}/\overline{\mathbb{F}_p}$ with no CM lifts.

Finiteness theorems for reductions of Hecke orbits Applications to CM-lifting theorems

Theorem (Kisin, Lam, Shankar, S.)

Fix a lift A/K of $\overline{A}/\mathbb{F}_p$ to a characteristic 0 local field. Assume that \overline{A} is supersingular Then, the subset $\overline{I_p(A)}$ of $I_p(\overline{A})$ is finite.

We prove an analogous result for *p*-divisible groups over \mathcal{O}_K where the *p*-adic Galois representation has reductive monodromy.

Theorem (Kisin, Lam, Shankar, S.)

- Only finitely many supersingular^a abelian varieties $\overline{A}/\overline{\mathbb{F}}_p$ of a given dimension admit CM-lifts.
- Only finitely many supersingular K3 surfaces $\overline{X}/\mathbb{F}_p$ admit \overline{CM} -lifts when $p \ge 5$.

^aWe also prove a common generalization of the results for ordinary/supersingular strata to other Newton strata.

1 Lifting isogenies and endomorphisms of abelian varieties

2 A Galois-theoretic criterion for finiteness of Hecke orbits

\bigcirc Verifying Galois-theoretic criterion for supersingular \overline{A}

4 Applications to CM-lifting theorems

Notation

- *K*: finite extension of \mathbb{Q}_p
- G_K : absolute Galois group of K
- I_K : inertia subgroup of G_K
- A: abelian variety over K with good reduction
- \mathscr{G} : *p*-divisible group over *K* with good reduction
- V: rational *p*-adic Tate module of A or \mathscr{G}
- ρ : *p*-adic Galois representation $G_K \to GL(V)$

A Galois-theoretic criterion for finiteness

$$\rho\colon G_{\mathcal{K}} \to \mathrm{GL}(V) \cong \mathrm{GL}_{2g}(\mathbb{Q}_p).$$

Proposition ("Totally ramified up to finite index" criterion) If $\rho(I_K)$ has finite index in $\rho(G_K)$, then the reduction of the *p*-Hecke orbit of the corresponding A or \mathscr{G} is finite.

A Galois-theoretic criterion for finiteness

$$\rho\colon G_{\mathcal{K}} \to \mathrm{GL}(V) \cong \mathrm{GL}_{2g}(\mathbb{Q}_p).$$

Proposition ("Totally ramified up to finite index" criterion) If $\rho(I_K)$ has finite index in $\rho(G_K)$, then the reduction of the *p*-Hecke orbit of the corresponding A or \mathscr{G} is finite.

Proof sketch:

- All abelian varieties in the *p*-Hecke orbit of A are defined over the the fixed field K_ρ of ker(ρ).
- Assumption \Rightarrow The residue field of K_{ρ} is a finite field.
- The existence of the moduli space A_g + Zarhin's trick ⇒ there are only finitely many isomorphism classes of abelian varieties of a given dimension defined over a fixed finite field.

1 Lifting isogenies and endomorphisms of abelian varieties

2 A Galois-theoretic criterion for finiteness of Hecke orbits

3 Verifying Galois-theoretic criterion for supersingular \overline{A}

The unramified quotient T

$$\rho\colon G_{\mathcal{K}}\to \mathrm{GL}(\mathcal{V}).$$

Consider the exact sequence of algebraic groups by taking Zariski closures in GL(V).

$$1 \to \overline{\rho(I_{\mathcal{K}})} \to \overline{\rho(\mathcal{G}_{\mathcal{K}})} \to T \to 1.$$

Sen + $\epsilon \Rightarrow$ If T is finite, then $\rho(I_K)$ has finite index in $\rho(G_K)$.

The unramified quotient T

$$\rho\colon G_K\to \mathrm{GL}(V).$$

Consider the exact sequence of algebraic groups by taking Zariski closures in GL(V).

$$1 \to \overline{\rho(I_{\mathcal{K}})} \to \overline{\rho(G_{\mathcal{K}})} \to T \to 1.$$

Sen + $\epsilon \Rightarrow$ If T is finite, then $\rho(I_K)$ has finite index in $\rho(G_K)$. Goal: Show <u>T is finite if \overline{A} is supersingular</u>.

- V_T : a faithful \mathbb{Q}_p -representation of T
 - σ : image of a Frobenius element in $GL(V_T)$, a generator for the image of T in $GL(V_T)$.

We will show σ is semisimple and its eigenvalues are roots of unity.

T is finite if \overline{A} is supersingular

$$1 \to \overline{\rho(I_K)} \to \overline{\rho(G_K)} \to T \to 1,$$

 V_T a faithful repn. of T and $\langle \sigma \rangle = T \subset GL(V_T)$ (Frobenius).

Proof sketch:

- V_T is in the Tannakian category generated by $V(=V_p(A))$.
- V_T is unramified by the definition of T and crystalline, so the eigenvalues of σ are *p*-adic units.
- Since A is supersingular, Frobenius acts semisimply on D(V) ⊗ Q_p with eigenvalues rational powers of p up to roots of unity.
- The only power of *p* that is a *p*-adic unit is 1.

- 1 Lifting isogenies and endomorphisms of abelian varieties
- 2 A Galois-theoretic criterion for finiteness of Hecke orbits
- \bigcirc Verifying Galois-theoretic criterion for supersingular \overline{A}
- 4 Applications to CM-lifting theorems

Finiteness theorems for reductions of Hecke orbits Applications to CM-lifting theorems

Theorem (Kisin, Lam, Shankar, S.)

Fix a lift A/K of $\overline{A}/\mathbb{F}_p$ to a characteristic 0 local field. Assume that \overline{A} is supersingular Then, the subset $\overline{I_p(A)}$ of $I_p(\overline{A})$ is finite.

We prove an analogous result for *p*-divisible groups over \mathcal{O}_K where the *p*-adic Galois representation has reductive monodromy.

Theorem (Kisin, Lam, Shankar, S.)

- Only finitely many supersingular^a abelian varieties $\overline{A}/\overline{\mathbb{F}}_p$ of a given dimension admit CM-lifts.
- Only finitely many supersingular K3 surfaces $\overline{X}/\mathbb{F}_p$ admit \overline{CM} -lifts when $p \ge 5$.

^aWe also prove a common generalization of the results for ordinary/supersingular strata to other Newton strata.

Only finitely many supersingular abelian varieties of a given dimension have CM-lifts

Proof strategy:

- There are only finitely many supersingular \overline{A} with a given *p*-divisible group $\mathscr{G} := \overline{A}[p^{\infty}]$. (Oort)
- Por fixed dimension, *finitely many choices* for the CM-subalgebra F of End(𝒢) ⊗ Q_p.
 For fixed F, *only finitely many possibilities* for the p-adic CM type Φ: F → ∏^g_{i=1} Q_p = End_F(Lie 𝒢_{Q_p}).
- Upto unramified twists, there is only one isogeny class G_Φ/K of p-divisible group over local field with CM type Φ. (Conrad-Chai-Oort)
- Since *G*_Φ has CM, the reduction of its *p*-Hecke orbit is *finite* by our reductive monodromy theorem.