Conductors and minimal discriminants of hyperelliptic curves: a comparison in the tame case

Padmavathi Srinivasan

Georgia Institute of Technology

Georgia Algebraic Geometry Symposium February 24, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Outline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

- 2 Definitions and computational tools
- 3 Overview of inductive proof strategy
- 4 Computing change in conductor during induction
- 5 Computing change in discriminant during induction
- 6 Proof in action in an example

What are conductors and minimal discriminants?

Main Question: How are measures 1 and 2 related? Inequality? Example: $X/\mathbb{C}((t))$, $y^2 = f(x)$, genus g = 3 hyperelliptic $f(x) = (x^2 - t)(x^2 - 2t)(x - 1)(x - 1 + t)(x - 1 + 2t)(x - 1 + 3t)$ $- \operatorname{Art}(X) = 8$, $\Delta_X = 18$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Earlier results: (small genus, all residue characteristics)

- If g = 1, then $-\operatorname{Art}(X) = \Delta_X$. [Ogg-Saito formula]
- If g = 2, then Liu showed that − Art(X) ≤ Δ_X. He showed that equality does not always hold.

Earlier results: (small genus, all residue characteristics)

- If g = 1, then $-\operatorname{Art}(X) = \Delta_X$. [Ogg-Saito formula]
- If g = 2, then Liu showed that − Art(X) ≤ Δ_X. He showed that equality does not always hold.

Question: Does $- \operatorname{Art}(X) \leq \Delta_X$ hold for hyperelliptic curves of arbitrary genus g? Today: Yes, if the residue characteristic is > 2g + 1. [S.]

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

2 Definitions and computational tools

- 3 Overview of inductive proof strategy
- 4 Computing change in conductor during induction
- 5 Computing change in discriminant during induction
- 6 Proof in action in an example

Notation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\begin{array}{l} R \colon \mathbb{C}[[t]] \\ K \colon \mathbb{C}((t)), \text{ field of Laurent series} \\ \overline{K} \colon \bigcup_{n \geq 1} \mathbb{C}((t^{1/n})), \text{ field of Puiseux series} \\ \text{ord}_{t=0} \colon t\text{-adic valuation } \overline{K} \to \mathbb{Q} \cup \{\infty\}, \\ \text{normalized using ord}_{t=0}(t) = 1. \\ X \colon \text{smooth hyperelliptic } K\text{-curve} \end{array}$

g: genus of X

Minimal discriminant

Definition: The minimal discriminant Δ_X of X/K is the nonnegative integer

$$\Delta_X := \min_{\substack{f(x) \in R[x] \\ y^2 = f(x), \text{ eqn. for } X}} \operatorname{ord}_{t=0} \underbrace{(\operatorname{disc}(f))}_{\in R}.$$

An example:

$$C_1: y^2 = x(x-t)(x-2t)(x-3t) \quad \rightsquigarrow \quad \operatorname{disc}(f) = 12.$$

$$C_2: y'^2 = x'(x'-1)(x'-2)(x'-3) \quad \rightsquigarrow \quad \operatorname{disc}(f) = 0.$$

Here $C_1 \cong_K C_2$ via $x' = \frac{x}{t}, y' = \frac{y}{t^2} \rightsquigarrow \Delta_X = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Artin conductor

For a curve *C* defined over \mathbb{C} , let $\chi^{\text{top}}(C)$ denote the topological Euler characteristic of C^{an} .

Artin conductor

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

For a curve C defined over \mathbb{C} , let $\chi^{\text{top}}(C)$ denote the topological Euler characteristic of C^{an} .

Definition: For any regular model $\mathcal{X} \to \operatorname{Spec} R$ of $X \to \operatorname{Spec} K$, let

$$-\operatorname{Art}(\mathcal{X}) := \chi^{\operatorname{top}}(\underbrace{\mathcal{X}_{t=0}}_{\operatorname{curve over }\mathbb{C}}) - (2 - 2g).$$

Artin conductor

For a curve *C* defined over \mathbb{C} , let $\chi^{\text{top}}(C)$ denote the topological Euler characteristic of C^{an} .

Definition: For any regular model $\mathcal{X} \to \operatorname{Spec} R$ of $X \to \operatorname{Spec} K$, let

$$-\operatorname{Art}(\mathcal{X}) := \chi^{\operatorname{top}}(\underbrace{\mathcal{X}_{t=0}}_{\operatorname{curve over } \mathbb{C}}) - (2-2g).$$

Definition: The (negative of the) Artin conductor $- \operatorname{Art}(X)$ of X/K is the nonnegative integer

$$-\operatorname{Art}(X) := \min_{\substack{\mathcal{X} \to \operatorname{Spec} R \\ \text{proper, regular} \\ \text{model for X/K}}} [-\operatorname{Art}(\mathcal{X})] \ (= -\operatorname{Art}(\mathcal{X}^{\min})).$$

Remark: If *P* is a closed point of \mathcal{X} , and $\mathsf{Bl}_P(\mathcal{X})$ is the blowup of \mathcal{X} at *P*, then $-\mathsf{Art}(\mathsf{Bl}_P(\mathcal{X})) = [-\mathsf{Art}(\mathcal{X})] + 1$.

Why care about conductors and minimal discriminants?

Fact: The invariants

 $\Delta_X = [-\operatorname{Art}(X)] = 0$

if and only if X has a smooth model over Spec R and are strictly > 0 otherwise.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Main result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (S.)

Let K be the fraction field of a Henselian discrete valuation ring. Let X be a smooth hyperelliptic curve over K of genus $g \ge 1$. Assume that the residue characteristic is > 2g + 1. Then,

 $-\operatorname{Art}(X) \leq \Delta_X.$

Riemann-Hurwitz formula:

$$-\operatorname{Art}(\mathcal{X})=2\chi^{\operatorname{top}}(\mathcal{Y}_{t=0})-\chi^{\operatorname{top}}(B_{t=0})-(2-2g).$$

Example: $\mathcal{Y} = \mathbb{P}^1_R$, $f(x) = x^{2g+2} - t$, B: f = 0.

$$\chi^{ ext{top}}(\mathcal{Y}_{t=0}) = \ \chi^{ ext{top}}(B_{t=0}) = \ -\operatorname{Art}(\mathcal{X}) =$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Riemann-Hurwitz formula:

$$-\operatorname{Art}(\mathcal{X}) = 2\chi^{\operatorname{top}}(\mathcal{Y}_{t=0}) - \chi^{\operatorname{top}}(B_{t=0}) - (2-2g).$$

Example: $\mathcal{Y} = \mathbb{P}^1_R$, $f(x) = x^{2g+2} - t$, $B \colon f = 0$.

$$\chi^{\text{top}}(\mathcal{Y}_{t=0}) = \chi^{\text{top}}(\mathbb{P}^{1}_{\mathbb{C}}) =$$

 $\chi^{\text{top}}(B_{t=0}) =$
 $-\operatorname{Art}(\mathcal{X}) =$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Riemann-Hurwitz formula:

$$-\operatorname{Art}(\mathcal{X}) = 2\chi^{\operatorname{top}}(\mathcal{Y}_{t=0}) - \chi^{\operatorname{top}}(B_{t=0}) - (2-2g).$$

Example: $\mathcal{Y} = \mathbb{P}^1_R$, $f(x) = x^{2g+2} - t$, $B \colon f = 0$.

$$\chi^{\text{top}}(\mathcal{Y}_{t=0}) = \chi^{\text{top}}(\mathbb{P}^{1}_{\mathbb{C}}) = 2.$$

 $\chi^{\text{top}}(B_{t=0}) = -\operatorname{Art}(\mathcal{X}) =$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Riemann-Hurwitz formula:

$$-\operatorname{Art}(\mathcal{X}) = 2\chi^{\operatorname{top}}(\mathcal{Y}_{t=0}) - \chi^{\operatorname{top}}(B_{t=0}) - (2-2g).$$

Example: $\mathcal{Y} = \mathbb{P}^1_R$, $f(x) = x^{2g+2} - t$, $B \colon f = 0$.

$$\chi^{\mathrm{top}}(\mathcal{Y}_{t=0}) = \chi^{\mathrm{top}}(\mathbb{P}^{1}_{\mathbb{C}}) = 2.$$

 $\chi^{\mathrm{top}}(\mathcal{B}_{t=0}) = \chi^{\mathrm{top}}(\mathrm{pt}) = 1.$
 $-\operatorname{Art}(\mathcal{X}) =$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Riemann-Hurwitz formula:

$$-\operatorname{Art}(\mathcal{X}) = 2\chi^{\operatorname{top}}(\mathcal{Y}_{t=0}) - \chi^{\operatorname{top}}(B_{t=0}) - (2-2g).$$

Example: $\mathcal{Y} = \mathbb{P}^1_R$, $f(x) = x^{2g+2} - t$, $B \colon f = 0$.

$$\chi^{\text{top}}(\mathcal{Y}_{t=0}) = \chi^{\text{top}}(\mathbb{P}^{1}_{\mathbb{C}}) = 2.$$

$$\chi^{\text{top}}(B_{t=0}) = \chi^{\text{top}}(\text{pt}) = 1.$$

$$-\operatorname{Art}(\mathcal{X}) = 2 \cdot 2 - 1 - (2 - 2g) = 2g + 1.$$

Computing discriminants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goal: Visualize relative distances of roots \rightsquigarrow Reorganize roots of $f \in R[x]$ into a metric tree T(f)

Example 1: Roots of f are K-rational

$$f(x) = (x - 7)(x - 7 - t)(x - 5)(x - 5 - t)$$

(x - 1 - 2t)(x - 1 - 2t - t²)(x - 1 - 3t)(x - 1 - 3t - t²)
Roots of f = {7,7+t,5,5+t,1+2t,1+2t+t²,1+3t,1+3t+t²}

Idea: Partition the roots successively, using their residues mod t, mod t^2 , etc..

$$\begin{vmatrix} 7,7+t,5,5+t,1+2t,\\ 1+2t+t^2,1+3t,1+3t+t^2 \end{vmatrix}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Computing discriminants

Example 2: Roots of f are not K-rational

Roots of $f = t^{2/3} + t^{5/6}$ and all its Galois conjugates = $\{t^{2/3} + t^{5/6}, t^{2/3} - t^{5/6}, \omega t^{2/3} - \omega^2 t^{5/6}, \omega t^{2/3} + \omega^2 t^{5/6}, \omega^2 t^{2/3} + \omega t^{5/6}, \omega^2 t^{2/3} - \omega t^{5/6}\}$

- The roots of f have $t^{1/6}$ -adic expansions.
- Draw the metric tree using $t^{1/6}$ -adic expansions.
- Rescale all lengths by 1/6.

The metric function and discriminants

Definition Let α, β be two roots of f.

 $\begin{aligned} &(\alpha|\beta)_{\eta} := \operatorname{ord}_{t=0} (\alpha - \beta) \\ &= \operatorname{Length} \text{ of common segment of path from } \eta \text{ to } \alpha \text{ and } \beta. \end{aligned}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition Let α, β be two roots of f.

 $\begin{aligned} &(\alpha|\beta)_{\eta} := \operatorname{ord}_{t=0} (\alpha - \beta) \\ &= \operatorname{Length} \text{ of common segment of path from } \eta \text{ to } \alpha \text{ and } \beta. \end{aligned}$

Fact Let (α_i) be the collection of roots of f. Then,

 $\Delta_f = \sum_{i \neq j} (\alpha_i | \alpha_j)_{\eta}.$

Outline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

2 Definitions and computational tools

Overview of inductive proof strategy

- 4 Computing change in conductor during induction
- 5 Computing change in discriminant during induction
- 6 Proof in action in an example

Explicit regular models

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

 $-\operatorname{Art}(\mathcal{X}) \leq \Delta_X.$

Explicit regular models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$(-\operatorname{Art}(X) \leq) - \operatorname{Art}(\mathcal{X}) \leq \Delta_X.$$

Explicit regular models

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$(-\operatorname{Art}(X) \leq) - \operatorname{Art}(\mathcal{X}) \leq \Delta_X.$$

Our choice: Jung's method for resolving surface singularties. Let

$$\Delta_f := \operatorname{ord}_{t=0}(\operatorname{disc}(f)) \text{ for any } f \in R[x]$$

div(f) := Divisor of f in \mathbb{P}^1_R
 $\mathcal{Y}_f :=$ Embedded resolution of the pair ($\mathbb{P}^1_R, \operatorname{div}(f)$)
 $\mathcal{X}_f :=$ Normalization of \mathcal{Y}_f in $K(X)$

Jung \Rightarrow The model $\mathcal{X}_f \rightarrow \operatorname{Spec} R$ of X is (almost) regular.

Explicit regular model: Let $y^2 = f(x)$ be an equation for X with $f(x) \in R[x]$ and $\Delta_X = \Delta_f$. Set $\mathcal{X} = \mathcal{X}_f$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Strategy: Induction on Δ_f .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strategy: Induction on Δ_f .

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}^1_R$ is regular, we have $-\operatorname{Art}(\mathcal{X}_f) = \Delta_f$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Strategy: Induction on Δ_f .

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}^1_R$ is regular, we have $-\operatorname{Art}(\mathcal{X}_f) = \Delta_f$.

STEP 2: Inductive step: If div(f) is not regular, replace f by a collection $(f_P^{\text{sm}}, f_P^{\text{nod}})_{P \in \text{div}(f)^{\text{Sing}}}$.

Strategy: Induction on Δ_f .

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}^1_R$ is regular, we have $-\operatorname{Art}(\mathcal{X}_f) = \Delta_f$.

STEP 2: Inductive step: If div(f) is not regular, replace f by a collection $(f_P^{\text{sm}}, f_P^{\text{nod}})_{P \in \text{div}(f)^{\text{Sing}}}$.

STEP 3: Let $(-\operatorname{Art}(\mathcal{X}_{f_{p}})) = (-\operatorname{Art}(\mathcal{X}_{f_{p}^{\mathrm{sm}}})) + (-\operatorname{Art}(\mathcal{X}_{f_{p}^{\mathrm{nod}}}))$, and let $\Delta_{f_{p}} = \Delta_{f_{p}^{\mathrm{sm}}} + \Delta_{f_{p}^{\mathrm{nod}}}$. 3A: Compute $\delta(-\operatorname{Art}) := -\operatorname{Art}(\mathcal{X}_{f}) - \sum_{P \in \operatorname{div}(f)^{\mathrm{Sing}}} (-\operatorname{Art}(\mathcal{X}_{f_{p}}))$. 3B: Compute $\delta(\Delta) := \Delta_{f} - \sum_{P \in \operatorname{div}(f)^{\mathrm{Sing}}} \Delta_{f_{P}}$. 3C: Prove $\delta(-\operatorname{Art}) \leq \delta(\Delta)$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ == ∽へ⊙

Strategy: Induction on Δ_f .

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}^1_R$ is regular, we have $-\operatorname{Art}(\mathcal{X}_f) = \Delta_f$.

STEP 2: Inductive step: If div(f) is not regular, replace f by a collection $(f_P^{\text{sm}}, f_P^{\text{nod}})_{P \in \text{div}(f)^{\text{Sing}}}$.

STEP 3: Let $(-\operatorname{Art}(\mathcal{X}_{f_{p}})) = (-\operatorname{Art}(\mathcal{X}_{f_{p}^{\operatorname{sm}}})) + (-\operatorname{Art}(\mathcal{X}_{f_{p}^{\operatorname{nod}}}))$, and let $\Delta_{f_{p}} = \Delta_{f_{p}^{\operatorname{sm}}} + \Delta_{f_{p}^{\operatorname{nod}}}$. 3A: Compute $\delta(-\operatorname{Art}) := -\operatorname{Art}(\mathcal{X}_{f}) - \sum_{P \in \operatorname{div}(f)^{\operatorname{Sing}}} (-\operatorname{Art}(\mathcal{X}_{f_{p}}))$. 3B: Compute $\delta(\Delta) := \Delta_{f} - \sum_{P \in \operatorname{div}(f)^{\operatorname{Sing}}} \Delta_{f_{p}}$. 3C: Prove $\delta(-\operatorname{Art}) \leq \delta(\Delta)$.

STEP 4: Termination: Reduce to div(f) regular after finitely many replacements.

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

- 2 Definitions and computational tools
- 3 Overview of inductive proof strategy

4 Computing change in conductor during induction

- 5 Computing change in discriminant during induction
- 6 Proof in action in an example

Main ingredients in calculation:

- Jung's method gives a natural way to identify $(\mathcal{Y}_{f_{P}^{\mathrm{sm/nod}},t=0}, B_{f_{P}^{\mathrm{sm/nod}},t=0})$ with a closed subset of $(\mathcal{Y}_{t=0}, B_{t=0})$.
- Use the additivity of χ^{top} and inclusion-exclusion/excision for $(\mathcal{Y}_{f_{\rho}^{\text{sm/nod}},t=0}, B_{f_{\rho}^{\text{sm/nod}},t=0}) \subset (\mathcal{Y}_{t=0}, B_{t=0}).$
- → an explicit formula for $\delta(-\operatorname{Art}) :=$ - Art(\mathcal{X}_f) - $\sum_{P \in \operatorname{div}(f)^{\operatorname{Sing}}} [(-\operatorname{Art}(\mathcal{X}_{f_p^{\operatorname{sm}}})) + (-\operatorname{Art}(\mathcal{X}_{f_p^{\operatorname{nod}}}))]$ (Omitted).

 $(\mathcal{Y}_{f_P,t=0}, B_{f_P,t=0})$ is a closed subset of $(\mathcal{Y}_{f,t=0}, B_{f,t=0})$

$$f(x) = (x-7)(x-7-t)(x-5)(x-5-t)$$

(x-1-2t)(x-1-2t-t²)(x-1-3t)(x-1-3t-t²)
$$f_{3}^{sm}(x) = (x-2)(x-2-t)(x-3)(x-3-t).$$

Outline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

- 2 Definitions and computational tools
- 3 Overview of inductive proof strategy
- 4 Computing change in conductor during induction

5 Computing change in discriminant during induction

6 Proof in action in an example

Computing change in discriminant

Remarks:

- It is enough to relate T(f) to $T(f_P^{\text{sm}})$ and $T(f_P^{\text{nod}})$.
- If we do it carefully, we simultaneously obtain a proof of termination of induction.

```
T(f_P^{sm}) is a subtree of T(f).
T(f_P^{nod}) is more tricky!
```

$T(f_P^{sm})$ is a subtree of T(f)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$f(x) = (x - 7)(x - 7 - t)(x - 5)(x - 5 - t)$$

(x - 1 - 2t)(x - 1 - 2t - t²)(x - 1 - 3t)(x - 1 - 3t - t²)
$$f_{3}^{sm}(x) = (x - 2)(x - 2 - t)(x - 3)(x - 3 - t).$$

Obtaining $T(f_P^{nod})$ from Abhyankar's Inversion Formula

Special case: Suppose that

- f is irreducible,
- the valuation of a root of f is a/b < 1, and,
- gcd(a, b) = 1.

Fact: T(f) is obtained by gluing *b* identical subtrees at distance a/b from η .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Symmetry of T(f)

Example: Roots of $f = t^{2/3} + t^{5/6}$ and its conjugates, a/b = 2/3.

Obtaining $T(f_P^{nod})$ from Abhyankar's Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root of f is a/b < 1, with gcd(a, b) = 1.

Fact: T(f) is obtained by gluing *b* identical subtrees at distance a/b from η .

Abhyankar $\Rightarrow T(f_P^{nod})$ can then be obtained by gluing *a* identical new subtrees at distance (b/a) - 1 from η , where

New subtree metric = (Old subtree metric) $\cdot b/a$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Obtaining $T(f_P^{nod})$ from Abhyankar's Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root of f is a/b < 1, with gcd(a, b) = 1.

Fact: T(f) is obtained by gluing *b* identical subtrees at distance a/b from η .

Abhyankar $\Rightarrow T(f_P^{\text{nod}})$ can then be obtained by gluing *a* identical new subtrees at distance (b/a) - 1 from η , where

New subtree metric = (Old subtree metric) $\cdot b/a$.

General case: Transform trees for each irreducible nodal factor separately, and then glue them back together maintaining 'expected overlaps'.

$T(f) \rightsquigarrow T(f_P^{\mathrm{nod}})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Distance from η changes according to $(a/b) \rightsquigarrow (b/a) - 1$. New subtree metric = (Old subtree metric) $\cdot b/a$.

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

- 2 Definitions and computational tools
- 3 Overview of inductive proof strategy
- 4 Computing change in conductor during induction
- 5 Computing change in discriminant during induction
- Proof in action in an example

An explicit example. $f(x) = (x^2 - t)(x^2 - 2t)(x - 1)(x - 1 + t)(x - 1 + 2t)(x - 1 + 3t).$

Replacement steps:

$$f(x) = (x^{2} - t)(x^{2} - 2t)(x - 1)(x - 1 + t)(x - 1 + 2t)(x - 1 + 3t)$$

$$f_{P_{2}}(x) = (x - t)(x - (1/2)t)$$

$$f_{P_{3}}(x) = (x - 1)(x - (1/2))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An explicit example. $f(x) = (x^2 - t)(x^2 - 2t)(x - 1)(x - 1 + t)(x - 1 + 2t)(x - 1 + 3t).$

Replacement steps:

$$f(x) = (x^{2} - t)(x^{2} - 2t)(x - 1)(x - 1 + t)(x - 1 + 2t)(x - 1 + 3t)$$

$$f_{P_{2}}(x) = (x - t)(x - (1/2)t)$$

$$f_{P_{3}}(x) = (x - 1)(x - (1/2))$$

3A: $\delta(-\operatorname{Art})$: $-\operatorname{Art}(\mathcal{X}_{f}) - [-\operatorname{Art}(\mathcal{X}_{f_{1}}) - \operatorname{Art}(\mathcal{X}_{f_{2}})] = 2 + 4$. **3B**: $\delta(\Delta)$: $\Delta_{f} - [\Delta_{f_{1}} + \Delta_{f_{2}}] = 2\binom{4}{2} + 4 = 12 + 4$. **3C**: $\delta(-\operatorname{Art}) \leq \delta(\Delta)$: $2 + 4 \leq 12 + 4$.

$$\begin{aligned} &\textbf{3A: } \delta(-\mathsf{Art}): -\mathsf{Art}(\mathcal{X}_{f_2}) - [-\mathsf{Art}(\mathcal{X}_{f_3})] = 2. \\ &\textbf{3B: } \delta(\Delta): \Delta_{f_2} - \Delta_{f_3} = 2\binom{2}{2} = 2. \\ &\textbf{3C: } \delta(-\mathsf{Art}) \leq \delta(\Delta): 2 \leq 2. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thank you!