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@ Introduction



What are conductors and minimal discriminants?

Degenerating family Measures of
of hyperelliptic curves degeneracy

- N

@. Artin conductor @ Minimal discriminant

Main Question: How are measures (1) and (2) related? Inequality?

Example: X/C((t)), y? = f(x), genus g = 3 hyperelliptic

f(x) = (x* = t)(x* = 2t)(x — 1)(x = 1 + t)(x — 1 +2t)(x — 1 + 3t)
— Art(X) = 8, Ax = 18.



How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)
o If g =1, then — Art(X) = Ax. [Ogg-Saito formula]

e If g =2, then Liu showed that — Art(X) < Ax. He showed
that equality does not always hold.



How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)
o If g =1, then — Art(X) = Ax. [Ogg-Saito formula]

e If g =2, then Liu showed that — Art(X) < Ax. He showed
that equality does not always hold.

Question: Does — Art(X) < Ax hold for hyperelliptic curves of
arbitrary genus g7
Today: Yes, if the residue characteristic is > 2g + 1. [S/]
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@ Definitions and computational tools



Notation

R: Clt]
K: C((t)), field of Laurent series
K: Ups1 C((tY™)), field of Puiseux series
ord;—g: t-adic valuation K — Q U {00},
normalized using ord;—o(t) = 1.
X: smooth hyperelliptic K-curve
g: genus of X



Minimal discriminant

Definition: The minimal discriminant Ax of X/K is the
nonnegative integer

Ax = min ord;—g (disc(f)).
f(x)ER[x] ———
y?=f(x), eqn. for X €R

An example:

Ci:y? = x(x — t)(x — 2t)(x — 3t) ~ disc(f) = 12.
Co:y?=xX(xX —1)(x¥ —2)(xX' =3)  ~ disc(f) =0.

Here C; =k C2viax’:§,y’:%WAX:0.



Artin conductor

For a curve C defined over C, let x'°P(C) denote the topological
Euler characteristic of C*".
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Artin conductor

For a curve C defined over C, let x'°P(C) denote the topological
Euler characteristic of C?".

Definition: For any regular model X — Spec R of X — Spec K, let

—Ar(X) = P Xig ) (2-26)

curve over C

Definition: The (negative of the) Artin conductor — Art(X) of
X /K is the nonnegative integer
— Art(X) = i —Art(X)] (= — Art(x™m)).
w(X)i= | min (- AR)] (= - Ar()

proper, regular
model for X/K

Remark: If P is a closed point of X', and Blp(X) is the blowup of
X at P, then — Art(Blp(X)) = [~ Art(X)] + 1.



Why care about conductors and minimal discriminants?

Fact: The invariants
Ax =[-Art(X)] =0

if and only if X has a smooth model over Spec R and are strictly
> 0 otherwise.



Main result

Theorem (S.)

Let K be the fraction field of a Henselian discrete valuation ring.

Let X be a smooth hyperelliptic curve over K of genus g > 1.

Assume that the residue characteristic is > 2g + 1.
Then,

— Art(X) < Ax.



Computing conductors

Norm(Y,K(X)) =1 X ¢+—— X

innite \Pil

BCYy+—— P
Branch divisor J l

Spec R «+———— Spec K

Riemann-Hurwitz formula:
= Art(X) = 2x"P(Ve=0) — X"P(Bt=0) — (2 — 2g).
Example: Y =PL, f(x) =x%+2 —t, B: f =0.
X'P(Ve=o) =
X°P(Be—o)
—Art(X) =
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Computing conductors

Norm(Y,K(X)) =1 X ¢+—— X

innite \Pil

BCYy+—— P
Branch divisor J l

Spec R «+———— Spec K

Riemann-Hurwitz formula:
—Art(X) = 2x"P(Vi=0) — X*°P(Bi=0) — (2 — 2g).
Example: Y = PL, f(x) = x%%2 —t, B: f=0.
top( top(IP)l) 2.

X
X"P(pt) = 1.
2.2-1-(2—2g)=2g+1.

=0) =
top( 0)
—Art(X) =



Computing discriminants

Goal: Visualize relative distances of roots ~~
Reorganize roots of f € R[x] into a metric tree T(f)

Example 1: Roots of f are K-rational

f(x)=(x—7)(x—7—1t)(x—=5)(x—5—1)
(x —1-2t)(x =1 -2t — t?)(x =1 —3t)(x — 1 — 3t — t?)

Roots of f = {7,7+1t,5,5+1t, 142t 14+2t+t> 143t 14+3t+1t2}

Idea: Partition the roots successively, using their residues mod t,
mod t2, etc..



7,7+ t,5,5+t,14+ 2t
1+2t+t2,14+3t,1+3t+t2

Metric tree of a polynomial



Metric tree of a polynomial

7,74+ t,5,5+t, 14 2t,
1+2t+t2,14+3t,1+3t+t2

’7,7—1—1“”5,54—1“‘ L43t+ 820 -l
M
1+2t, 142t + t2, J
2
143,143t +1¢ e Mr”’ﬂt



7,7+ t,5,5+t,14+ 2t
1+2t+t2,14+3t,1+3t+t2

]L7+tH&5+t

1+2t, 142t + t2,
1+3t,1+3t41t2

RN

1+ 2t
142t+t2

1+ 3t,
14+3t+¢t2

Metric tree of a polynomial



Computing discriminants

Example 2: Roots of f are not K-rational
Roots of £ = t%/3 + t/° and all its Galois conjugates
_ {t2/3 4 £5/6 $2/3 _45/6 32/3 _ (245/6 (,42/3 | 2456

W22 4 w50 223 wt5/6}

@ The roots of f have t'/%-adic expansions.
e Draw the metric tree using t/6-adic expansions.

@ Rescale all lengths by 1/6.



£2/3 4 £5/6 42/3 _ 45/6
Wt2/3 — (215/6 ,12/3 1 245/,
W2t2/3 4 wt5/6 (,2¢2/3 _ ,15/6

/

£2/3 4 ¢5/6
#2/3 _ $5/6

wi2/3 — (215/6,
wt?/3 4 ,25/6

W2t2/3 4 t5/6,
21213 _ ,e5/6

Metric tree of a polynomial

£2/3 _ 5/6 ~t2/3 4 15/6

'3
. 1/6

\

W22/3 _ wt5/6v’ \’wtz/3 + W2¢5/6

W2t2/3 4 t5/6 <\’ \/‘Q’,»wg/z W245/6
2/3
[ ]
n



The metric function and discriminants

Definition Let a, 8 be two roots of f.

(a|B)y :=ordi—g (ov — B3)

= Length of common segment of path from 7 to « and g.

. £2/3 _ f5/6, 1 f2/3 1 ¢5/6
" T’
<\*/)[\)r,—> (‘~1/\)r”7
I/ \\ I/ \\
242/3 _, .5/6v L .2/3 2,5/6 v L
wt wt wt + w*t

2/3 2/3

U] 0

(w2t2/3 _ wts/ﬁ\wt2/3 4 w2t5/6),,, _ 2/3 (t2/3 _ t5/6\t2/3 + t5/6)” _ 5/6



The metric function and discriminants

Definition Let «, 5 be two roots of f.

(a|B)y :=ordi—g (v — B3)

= Length of common segment of path from 7 to o and g.

Fact Let («;) be the collection of roots of f. Then,

Ar = (ailag)y-

i#j
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© Overview of inductive proof strategy



Explicit regular models

Remark: Suffices to find ONE proper regular model X such that

— Art(X) < Ax.
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Explicit regular models

Remark: Suffices to find ONE proper regular model X such that
(—Art(X) <)—Art(X) < Ax.
Our choice: Jung's method for resolving surface singularties. Let

Af 1= ordi—o(disc(f)) for any f € R[x]

div(f) := Divisor of f in Pk
V¢ := Embedded resolution of the pair (P, div(f))
Xr := Normalization of V¢ in K(X)

Jung = The model Xr — Spec R of X is (almost) regular.

Explicit regular model: Let y? = f(x) be an equation for X with
f(x) € R[x] and Ax = A¢. Set X = A.



Overview of proof for — Art(Xr) < Ay,

Strategy: Induction on Ar.
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Overview of proof for — Art(Xr) < Ay,

Strategy: Induction on Ar.

STEP 1: Base case: Prove that whenever div(f) C P} is regular,
we have — Art(Xr) = Ar.

STEP 2: Inductive step: If div(f) is not regular, replace f by a
collection (f3™, fEOd)Pediv(f)smg.

STEP 3: Let (— Art(Xp,)) = (— Art(Xpzm)) + (— Art(Xppoa)), and
let AfP = Af;m + Af;od.

3A: Compute 0(— Art) := — Art(Xr) — 3= pegiy(pysine(— Art(As,)).
3B: Compute §(A) := Ar = 3 pegiv(rysing Dfp-

3C: Prove 0(—Art) < §(A).

STEP 4: Termination: Reduce to div(f) regular after finitely many
replacements.
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@ Computing change in conductor during induction



Replacement operation and P

Main ingredients in calculation:
@ Jung's method gives a natural way to identify
(yf;m/nodﬂh:o, Bf.;m/nodl_zo) with a closed subset of
(Vt=0, Bt=o)-
@ Use the additivity of x*°P and inclusion-exclusion /excision for

o) € (Ve=0, Bt=o).

=
~> an epr|C|t formula for 0(— Art) :=

— ATH(F) = Y pegn(rysnel(— Art(Xgzm)) + (= Art(Xpgo))
(Omitted).

(y sm/nod =0’ stm/nod



(Vfo.t—0, Bf t—0) is a closed subset of (Vr o, Bf.t0)

f(xX)=(x—7)(x—=7—=1t)(x—=5)(x—5—1t)
(x =1 —=2t)(x =1 =2t — t?)(x — 1 = 3t)(x — 1 — 3t — t?)
BERx)=(x—=2)(x—=2—=t)(x —3)(x =3 —1t).

¥y L . . 1+3t+ t2
f35m7t:0 / %Ww ]. + 3t
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© Computing change in discriminant during induction



Computing change in discriminant

Remarks:
o It is enough to relate T(f) to T(fs™) and T(f5°9).

o If we do it carefully, we simultaneously obtain a proof of
termination of induction.

T(fg™) is a subtree of T(f).

T(f3o4) is more tricky!



T(f3™) is a subtree of T(f)

f(X)=(x—=7)(x—=7—-1t)(x—=5)(x—-5-1)
(x —1=2t)(x =1 -2t —t*)(x — 1 = 3t)(x — 1 — 3t — t?)
£7(x) = (x —2)(x —2 — t)(x = 3)(x — 3 — t).

1+3t+t2¢-_ | o142t + ¢

‘.\. /.



Obtaining T(f5°1) from Abhyankar's Inversion Formula

Special case: Suppose that
@ f is irreducible,
@ the valuation of a root of f is a/b < 1, and,
e gcd(a, b) = 1.

Fact: T(f) is obtained by gluing b identical subtrees at distance
a/b from n.



Symmetry of T(f)

Example: Roots of f = t2/3 4 t5/6 and its conjugates, a/b = 2/3.

£2/3 _ 45/6 . - £2/3 4 ¢5/6
¥
1/6
1/6 1/6
W2t2/3 4 t5/6¢ / / vt/ 245/6
--o o
W22/3 _ wt5/6w’ \«wtz/a 1 W2t5/6
2/3

@



Obtaining T(f5°1) from Abhyankar's Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root
of fis a/b < 1, with ged(a, b) = 1.

Fact: T(f) is obtained by gluing b identical subtrees at distance
a/b from n.

Abhyankar = T(fFI}Od) can then be obtained by gluing a identical
new subtrees at distance (b/a) — 1 from 7, where

New subtree metric = (Old subtree metric) - b/a.



Obtaining T(f5°1) from Abhyankar's Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root
of fis a/b < 1, with ged(a, b) = 1.

Fact: T(f) is obtained by gluing b identical subtrees at distance
a/b from n.

Abhyankar = T(fFI}Od) can then be obtained by gluing a identical
new subtrees at distance (b/a) — 1 from 7, where

New subtree metric = (Old subtree metric) - b/a.

General case: Transform trees for each irreducible nodal factor
separately, and then glue them back together maintaining
‘expected overlaps'.



T(F) ~ T(f2*)

Distance from 7) changes according to (a/b) ~~ (b/a) — 1.
New subtree metric = (Old subtree metric) - b/a.

1/2=(1/4)-(2/1) -~
[

—

F\ /"‘ N

s AN

/E 1/6 (1/4) = (1/6)-(3/2)
-y - N ] 7 8

y L AR AN ~ | 1=(2/1) -1

Lf/ \§J
2/3 1/2 = (3/2) — 1

n n n
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@ Proof in action in an example



An explicit example. f(x) =
(x2—t)(x*> = 2t)(x = 1)(x = 1+ t)(x — 1+ 2t)(x — 1 +3t).

Replacement steps:
f(x)=(x>—t)(x®2 = 2t)(x —1)(x = 1+ t)(x — L+ 2t)(x — 1 + 3t)
— T
fp,(x) = (x — t)(x — (1/2)t) fp,(x) = x(x + 1)(x + 2)(x + 3)
1
fpy(x) = (x = 1)(x = (1/2))



An explicit example. f(x) =
(x2—t)(x*> = 2t)(x = 1)(x = 1+ t)(x — 1+ 2t)(x — 1 +3t).

Replacement steps:
f(x) = (x> — t)(x® = 2t)(x — 1)(x — 1+ t)(x — 1 + 2t)(x — 1 + 3t)
— T
fp,(x) = (x — t)(x — (1/2)t) fp,(x) = x(x + 1)(x + 2)(x + 3)
J
fp,(x) = (x = 1)(x = (1/2))
3A: 0(—Art): — Art(Xr) — [— Art(Xg) — Art(Xg)] =2+ 4.
3B: 0(A): Ar — [Ap + Ap] =2(3) +4=12+4.
3C: 0(—Art) <H(A):2+4<12+4.
3A: 0(—Art): — Art(Xy) — [— Art(Xy)] = 2.
3B: 5(A): Ay, — Ap =2(3) =2.
3C: 0(—Art) <5(A):2< 2.



Finally ..

Thank you!
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