Conductors and minimal discriminants of hyperelliptic curves: a comparison in the tame case

Padmavathi Srinivasan

Georgia Institute of Technology

Georgia Algebraic Geometry Symposium
February 24, 2018

Outline

(1) Introduction
(2) Definitions and computational tools
(3) Overview of inductive proof strategy

4 Computing change in conductor during induction
(5) Computing change in discriminant during induction
(6) Proof in action in an example

What are conductors and minimal discriminants?

Main Question: How are measures (1) and (2) related? Inequality?
Example: $X / \mathbb{C}((t)), y^{2}=f(x)$, genus $g=3$ hyperelliptic
$f(x)=\left(x^{2}-t\right)\left(x^{2}-2 t\right)(x-1)(x-1+t)(x-1+2 t)(x-1+3 t)$

$$
-\operatorname{Art}(X)=8, \quad \Delta x=18
$$

How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

- If $g=1$, then $-\operatorname{Art}(X)=\Delta_{X}$. [Ogg-Saito formula]
- If $g=2$, then Liu showed that $-\operatorname{Art}(X) \leq \Delta_{X}$. He showed that equality does not always hold.

Earlier results: (small genus, all residue characteristics)

- If $g=1$, then $-\operatorname{Art}(X)=\Delta_{X}$. [Ogg-Saito formula]
- If $g=2$, then Liu showed that $-\operatorname{Art}(X) \leq \Delta_{X}$. He showed that equality does not always hold.

Question: Does $-\operatorname{Art}(X) \leq \Delta_{X}$ hold for hyperelliptic curves of arbitrary genus g ?
Today: Yes, if the residue characteristic is $>2 g+1$. [S.]

Outline

(1) Introduction
(2) Definitions and computational tools
(3) Overview of inductive proof strategy
(4) Computing change in conductor during induction
(5) Computing change in discriminant during induction
(6) Proof in action in an example
$R: \mathbb{C}[[t]]$
$K: \mathbb{C}((t))$, field of Laurent series
$\bar{K}: \cup_{n \geq 1} \mathbb{C}\left(\left(t^{1 / n}\right)\right)$, field of Puiseux series $\operatorname{ord}_{t=0}: t$-adic valuation $\bar{K} \rightarrow \mathbb{Q} \cup\{\infty\}$, normalized using $\operatorname{ord}_{t=0}(t)=1$.
X : smooth hyperelliptic K-curve
g : genus of X

Minimal discriminant

Definition: The minimal discriminant Δ_{X} of X / K is the nonnegative integer

$$
\Delta_{X}:=\min _{\substack{f(x) \in R[x] \\ y^{2}=f(x), \text { eqn. for } x}} \operatorname{ord}_{t=0} \underbrace{(\operatorname{disc}(f))}_{\in R}
$$

An example:

$$
\begin{array}{ll}
C_{1}: y^{2}=x(x-t)(x-2 t)(x-3 t) & \rightsquigarrow \quad \operatorname{disc}(f)=12 . \\
C_{2}: y^{\prime 2}=x^{\prime}\left(x^{\prime}-1\right)\left(x^{\prime}-2\right)\left(x^{\prime}-3\right) & \rightsquigarrow \quad \operatorname{disc}(f)=0 .
\end{array}
$$

Here $C_{1} \cong{ }_{K} C_{2}$ via $x^{\prime}=\frac{x}{t}, y^{\prime}=\frac{y}{t^{2}} \rightsquigarrow \Delta x=0$.

Artin conductor

For a curve C defined over \mathbb{C}, let $\chi^{\text {top }}(C)$ denote the topological Euler characteristic of $C^{\text {an }}$.

Artin conductor

For a curve C defined over \mathbb{C}, let $\chi^{\text {top }}(C)$ denote the topological Euler characteristic of $C^{\text {an }}$.

Definition: For any regular model $\mathcal{X} \rightarrow$ Spec R of $X \rightarrow$ Spec K, let

$$
-\operatorname{Art}(\mathcal{X}):=\chi^{\text {top }}(\underbrace{\mathcal{X}_{t=0}}_{\text {curve over } \mathbb{C}})-(2-2 g)
$$

Artin conductor

For a curve C defined over \mathbb{C}, let $\chi^{\text {top }}(C)$ denote the topological Euler characteristic of $C^{\text {an }}$.

Definition: For any regular model $\mathcal{X} \rightarrow$ Spec R of $X \rightarrow$ Spec K, let

$$
-\operatorname{Art}(\mathcal{X}):=\chi^{\text {top }}(\underbrace{\mathcal{X}_{t=0}}_{\text {curve over } \mathbb{C}})-(2-2 g) .
$$

Definition: The (negative of the) Artin conductor $-\operatorname{Art}(X)$ of X / K is the nonnegative integer

$$
-\operatorname{Art}(X):=\min _{\substack{\mathcal{X} \rightarrow \operatorname{Spec} R \\ \text { proper, regular } \\ \text { model for } X / K}}[-\operatorname{Art}(\mathcal{X})] \quad\left(=-\operatorname{Art}\left(\mathcal{X}^{\min }\right)\right)
$$

Remark: If P is a closed point of \mathcal{X}, and $\operatorname{Bl}_{P}(\mathcal{X})$ is the blowup of \mathcal{X} at P, then $-\operatorname{Art}\left(\operatorname{BI}_{P}(\mathcal{X})\right)=[-\operatorname{Art}(\mathcal{X})]+1$.

Why care about conductors and minimal discriminants?

Fact: The invariants

$$
\Delta_{X}=[-\operatorname{Art}(X)]=0
$$

if and only if X has a smooth model over $\operatorname{Spec} R$ and are strictly >0 otherwise.

Main result

Theorem (S.)
Let K be the fraction field of a Henselian discrete valuation ring. Let X be a smooth hyperelliptic curve over K of genus $g \geq 1$. Assume that the residue characteristic is $>2 g+1$.
Then,

$$
-\operatorname{Art}(X) \leq \Delta_{X}
$$

Computing conductors

$\operatorname{Spec} R \longleftarrow \operatorname{Spec} K$

Riemann-Hurwitz formula:

$$
-\operatorname{Art}(\mathcal{X})=2 \chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right)-\chi^{\mathrm{top}}\left(B_{t=0}\right)-(2-2 g)
$$

Example: $\mathcal{Y}=\mathbb{P}_{R}^{1}, f(x)=x^{2 g+2}-t, B: f=0$.

$$
\begin{aligned}
\chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right) & = \\
\chi^{\mathrm{top}}\left(B_{t=0}\right) & = \\
-\operatorname{Art}(\mathcal{X}) & =
\end{aligned}
$$

Computing conductors

$$
\operatorname{Spec} R \longleftarrow \operatorname{Spec} K
$$

Riemann-Hurwitz formula:

$$
-\operatorname{Art}(\mathcal{X})=2 \chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right)-\chi^{\mathrm{top}}\left(B_{t=0}\right)-(2-2 g)
$$

Example: $\mathcal{Y}=\mathbb{P}_{R}^{1}, f(x)=x^{2 g+2}-t, B: f=0$.

$$
\begin{aligned}
\chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right) & =\chi^{\mathrm{top}}\left(\mathbb{P}_{\mathbb{C}}^{1}\right)= \\
\chi^{\mathrm{top}}\left(B_{t=0}\right) & = \\
-\operatorname{Art}(\mathcal{X}) & =
\end{aligned}
$$

Computing conductors

$$
\operatorname{Spec} R \longleftarrow \operatorname{Spec} K
$$

Riemann-Hurwitz formula:

$$
-\operatorname{Art}(\mathcal{X})=2 \chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right)-\chi^{\mathrm{top}}\left(B_{t=0}\right)-(2-2 g)
$$

Example: $\mathcal{Y}=\mathbb{P}_{R}^{1}, f(x)=x^{2 g+2}-t, B: f=0$.

$$
\begin{aligned}
\chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right) & =\chi^{\mathrm{top}}\left(\mathbb{P}_{\mathbb{C}}^{1}\right)=2 . \\
\chi^{\mathrm{top}}\left(B_{t=0}\right) & = \\
-\operatorname{Art}(\mathcal{X}) & =
\end{aligned}
$$

Computing conductors

$$
\operatorname{Spec} R \longleftarrow \operatorname{Spec} K
$$

Riemann-Hurwitz formula:

$$
-\operatorname{Art}(\mathcal{X})=2 \chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right)-\chi^{\mathrm{top}}\left(B_{t=0}\right)-(2-2 g)
$$

Example: $\mathcal{Y}=\mathbb{P}_{R}^{1}, f(x)=x^{2 g+2}-t, B: f=0$.

$$
\begin{aligned}
\chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right) & =\chi^{\mathrm{top}}\left(\mathbb{P}_{\mathbb{C}}^{1}\right)=2 \\
\chi^{\mathrm{top}}\left(B_{t=0}\right) & =\chi^{\mathrm{top}}(\mathrm{pt})=1 \\
-\operatorname{Art}(\mathcal{X}) & =
\end{aligned}
$$

Computing conductors

$\operatorname{Spec} R \longleftarrow \operatorname{Spec} K$

Riemann-Hurwitz formula:

$$
-\operatorname{Art}(\mathcal{X})=2 \chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right)-\chi^{\mathrm{top}}\left(B_{t=0}\right)-(2-2 g)
$$

Example: $\mathcal{Y}=\mathbb{P}_{R}^{1}, f(x)=x^{2 g+2}-t, B: f=0$.

$$
\begin{aligned}
\chi^{\mathrm{top}}\left(\mathcal{Y}_{t=0}\right) & =\chi^{\mathrm{top}}\left(\mathbb{P}_{\mathbb{C}}^{1}\right)=2 \\
\chi^{\mathrm{top}}\left(B_{t=0}\right) & =\chi^{\mathrm{top}}(\mathrm{pt})=1 \\
-\operatorname{Art}(\mathcal{X}) & =2 \cdot 2-1-(2-2 g)=2 g+1
\end{aligned}
$$

Computing discriminants

Goal: Visualize relative distances of roots \rightsquigarrow Reorganize roots of $f \in R[x]$ into a metric tree $T(f)$

Example 1: Roots of f are K-rational

$$
\begin{aligned}
f(x)= & (x-7)(x-7-t)(x-5)(x-5-t) \\
& (x-1-2 t)\left(x-1-2 t-t^{2}\right)(x-1-3 t)\left(x-1-3 t-t^{2}\right)
\end{aligned}
$$

Roots of $f=\left\{7,7+t, 5,5+t, 1+2 t, 1+2 t+t^{2}, 1+3 t, 1+3 t+t^{2}\right\}$

Idea: Partition the roots successively, using their residues mod t, $\bmod t^{2}$, etc. .

Metric tree of a polynomial
$7,7+t, 5,5+t, 1+2 t$
$1+2 t+t^{2}, 1+3 t, 1+3 t+t^{2}$

Metric tree of a polynomial

Metric tree of a polynomial

Computing discriminants

Example 2: Roots of f are not K-rational
Roots of $f=t^{2 / 3}+t^{5 / 6}$ and all its Galois conjugates

$$
\begin{gathered}
=\left\{t^{2 / 3}+t^{5 / 6}, t^{2 / 3}-t^{5 / 6}, \omega t^{2 / 3}-\omega^{2} t^{5 / 6}, \omega t^{2 / 3}+\omega^{2} t^{5 / 6}\right. \\
\left.\omega^{2} t^{2 / 3}+\omega t^{5 / 6}, \omega^{2} t^{2 / 3}-\omega t^{5 / 6}\right\}
\end{gathered}
$$

- The roots of f have $t^{1 / 6}$-adic expansions.
- Draw the metric tree using $t^{1 / 6}$-adic expansions.
- Rescale all lengths by $1 / 6$.

Metric tree of a polynomial

The metric function and discriminants

Definition Let α, β be two roots of f.

$$
(\alpha \mid \beta)_{\eta}:=\operatorname{ord}_{t=0}(\alpha-\beta)
$$

$=$ Length of common segment of path from η to α and β.

$$
\left(\omega^{2} t^{2 / 3}-\omega t^{5 / 6} \mid \omega t^{2 / 3}+\omega^{2} t^{5 / 6}\right)_{\eta}=2 / 3
$$

$$
\left(t^{2 / 3}-t^{5 / 6} \mid t^{2 / 3}+t^{5 / 6}\right)_{\eta}=5 / 6
$$

The metric function and discriminants

Definition Let α, β be two roots of f.

$$
\begin{aligned}
(\alpha \mid \beta)_{\eta} & :=\operatorname{ord}_{t=0}(\alpha-\beta) \\
& =\text { Length of common segment of path from } \eta \text { to } \alpha \text { and } \beta .
\end{aligned}
$$

Fact Let $\left(\alpha_{i}\right)$ be the collection of roots of f. Then,

$$
\Delta_{f}=\sum_{i \neq j}\left(\alpha_{i} \mid \alpha_{j}\right)_{\eta} .
$$

Outline

(1) Introduction
(2) Definitions and computational tools
(3) Overview of inductive proof strategy

4 Computing change in conductor during induction
(5) Computing change in discriminant during induction
(6) Proof in action in an example

Explicit regular models

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
-\operatorname{Art}(\mathcal{X}) \leq \Delta_{X}
$$

Explicit regular models

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
(-\operatorname{Art}(X) \leq)-\operatorname{Art}(\mathcal{X}) \leq \Delta_{X}
$$

Explicit regular models

Remark: Suffices to find ONE proper regular model \mathcal{X} such that

$$
(-\operatorname{Art}(X) \leq)-\operatorname{Art}(\mathcal{X}) \leq \Delta_{X}
$$

Our choice: Jung's method for resolving surface singularties. Let

$$
\begin{aligned}
\Delta_{f} & :=\operatorname{ord}_{t=0}(\operatorname{disc}(f)) \text { for any } f \in R[x] \\
\operatorname{div}(f) & :=\operatorname{Divisor} \text { of } f \text { in } \mathbb{P}_{R}^{1} \\
\mathcal{Y}_{f} & :=\text { Embedded resolution of the pair }\left(\mathbb{P}_{R}^{1}, \operatorname{div}(f)\right) \\
\mathcal{X}_{f} & :=\text { Normalization of } \mathcal{Y}_{f} \text { in } K(X)
\end{aligned}
$$

Jung \Rightarrow The model $\mathcal{X}_{f} \rightarrow$ Spec R of X is (almost) regular.
Explicit regular model: Let $y^{2}=f(x)$ be an equation for X with $f(x) \in R[x]$ and $\Delta_{X}=\Delta_{f}$. Set $\mathcal{X}=\mathcal{X}_{f}$.

Overview of proof for $-\operatorname{Art}\left(\mathcal{X}_{f}\right) \leq \Delta_{f}$.

Strategy: Induction on Δ_{f}.

Overview of proof for $-\operatorname{Art}\left(\mathcal{X}_{f}\right) \leq \Delta_{f}$.

Strategy: Induction on Δ_{f}.

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}_{R}^{1}$ is regular, we have $-\operatorname{Art}\left(\mathcal{X}_{f}\right)=\Delta_{f}$.

Overview of proof for $-\operatorname{Art}\left(\mathcal{X}_{f}\right) \leq \Delta_{f}$.

Strategy: Induction on Δ_{f}.

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}_{R}^{1}$ is regular, we have $-\operatorname{Art}\left(\mathcal{X}_{f}\right)=\Delta_{f}$.

STEP 2: Inductive step: If $\operatorname{div}(f)$ is not regular, replace f by a collection $\left(f_{P}^{\mathrm{sm}}, f_{P}^{\text {nod }}\right)_{P \in \operatorname{div}(f)^{\text {Sing }}}$.

Overview of proof for $-\operatorname{Art}\left(\mathcal{X}_{f}\right) \leq \Delta_{f}$.

Strategy: Induction on Δ_{f}.

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}_{R}^{1}$ is regular, we have $-\operatorname{Art}\left(\mathcal{X}_{f}\right)=\Delta_{f}$.

STEP 2: Inductive step: If $\operatorname{div}(f)$ is not regular, replace f by a collection $\left(f_{P}^{\mathrm{sm}}, f_{P}^{\text {nod }}\right)_{P \in \operatorname{div}(f)^{\text {Sing }}}$.

STEP 3: Let $\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}}\right)\right)=\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}^{\mathrm{sm}}}\right)\right)+\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}^{\text {nod }}}\right)\right)$, and let $\Delta_{f_{P}}=\Delta_{f_{P}^{\mathrm{sm}}}+\Delta_{f_{P}^{\text {nod }}}$.
3A: Compute $\left.\delta(-\operatorname{Art}):=-\operatorname{Art}\left(\mathcal{X}_{f}\right)-\sum_{P \in \operatorname{div}(f)^{\operatorname{Sing}}(-\operatorname{Art}}\left(\mathcal{X}_{f_{P}}\right)\right)$.
3B: Compute $\delta(\Delta):=\Delta_{f}-\sum_{P \in \operatorname{div}(f)^{\text {Sing }}} \Delta_{f_{P}}$.
3C: Prove $\delta(-$ Art $) \leq \delta(\Delta)$.

Overview of proof for $-\operatorname{Art}\left(\mathcal{X}_{f}\right) \leq \Delta_{f}$.

Strategy: Induction on Δ_{f}.

STEP 1: Base case: Prove that whenever $\operatorname{div}(f) \subset \mathbb{P}_{R}^{1}$ is regular, we have $-\operatorname{Art}\left(\mathcal{X}_{f}\right)=\Delta_{f}$.

STEP 2: Inductive step: If $\operatorname{div}(f)$ is not regular, replace f by a collection $\left(f_{P}^{\text {sm }}, f_{P}^{\text {nod }}\right)_{P \in \operatorname{div}(f)^{\text {Sing }}}$.

STEP 3: Let $\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}}\right)\right)=\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}^{\mathrm{sm}}}\right)\right)+\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}^{\mathrm{nod}}}\right)\right)$, and let $\Delta_{f_{P}}=\Delta_{f_{P}^{\mathrm{sm}}}+\Delta_{f_{P}^{\text {nod }}}$.
3A: Compute $\left.\delta(-\operatorname{Art}):=-\operatorname{Art}\left(\mathcal{X}_{f}\right)-\sum_{P \in \operatorname{div}(f)^{\operatorname{Sing}}(-\operatorname{Art}}\left(\mathcal{X}_{f_{P}}\right)\right)$.
3B: Compute $\delta(\Delta):=\Delta_{f}-\sum_{P \in \operatorname{div}(f)^{\text {Sing }}} \Delta_{f_{P}}$.
3C: Prove $\delta(-\operatorname{Art}) \leq \delta(\Delta)$.
STEP 4: Termination: Reduce to $\operatorname{div}(f)$ regular after finitely many replacements.

Outline

(1) Introduction
(2) Definitions and computational tools
(3) Overview of inductive proof strategy

4 Computing change in conductor during induction
(5) Computing change in discriminant during induction
(6) Proof in action in an example

Replacement operation and $\chi^{\text {top }}$

Main ingredients in calculation:

- Jung's method gives a natural way to identify $\left(\mathcal{Y}_{f_{P}^{\mathrm{sm} / \mathrm{nod}}, t=0}, B_{f_{P}^{\mathrm{sm} / \mathrm{nod}}, t=0}\right)$ with a closed subset of $\left(\mathcal{Y}_{t=0}, B_{t=0}\right)$.
- Use the additivity of $\chi^{\text {top }}$ and inclusion-exclusion/excision for $\left(\mathcal{Y}_{f_{P}^{\mathrm{sm} / \mathrm{nod}}, t=0}, B_{f_{P}^{\mathrm{sm} / \mathrm{nod}}, t=0}\right) \subset\left(\mathcal{Y}_{t=0}, B_{t=0}\right)$.
\rightsquigarrow an explicit formula for $\delta(-$ Art $):=$
$-\operatorname{Art}\left(\mathcal{X}_{f}\right)-\sum_{P \in \operatorname{div}(f)^{\operatorname{Sing}}}\left[\left(-\operatorname{Art}\left(\mathcal{X}_{f}^{\mathrm{sm}}\right)\right)+\left(-\operatorname{Art}\left(\mathcal{X}_{f_{P}^{\mathrm{nod}}}\right)\right)\right]$
(Omitted).
$\left(\mathcal{Y}_{f, t=0}, B_{f \rho, t=0}\right)$ is a closed subset of $\left(\mathcal{Y}_{f, t=0}, B_{f, t=0}\right)$

$$
\begin{aligned}
f(x)= & (x-7)(x-7-t)(x-5)(x-5-t) \\
& (x-1-2 t)\left(x-1-2 t-t^{2}\right)(x-1-3 t)\left(x-1-3 t-t^{2}\right) \\
f_{3}^{\mathrm{sm}}(x)= & (x-2)(x-2-t)(x-3)(x-3-t) .
\end{aligned}
$$

Outline

(1) Introduction
(2) Definitions and computational tools
(3) Overview of inductive proof strategy

4 Computing change in conductor during induction
(5) Computing change in discriminant during induction
(6) Proof in action in an example

Computing change in discriminant

Remarks:

- It is enough to relate $T(f)$ to $T\left(f_{P}^{\mathrm{sm}}\right)$ and $T\left(f_{P}^{\text {nod }}\right)$.
- If we do it carefully, we simultaneously obtain a proof of termination of induction.
$T\left(f_{P}^{\mathrm{sm}}\right)$ is a subtree of $T(f)$.
$T\left(f_{P}^{\text {nod }}\right)$ is more tricky!

$$
\begin{aligned}
f(x)= & (x-7)(x-7-t)(x-5)(x-5-t) \\
& (x-1-2 t)\left(x-1-2 t-t^{2}\right)(x-1-3 t)\left(x-1-3 t-t^{2}\right) \\
f_{3}^{\mathrm{sm}}(x)= & (x-2)(x-2-t)(x-3)(x-3-t) .
\end{aligned}
$$

Obtaining $T\left(f_{P}^{\text {nod }}\right)$ from Abhyankar's Inversion Formula

Special case: Suppose that

- f is irreducible,
- the valuation of a root of f is $a / b<1$, and,
- $\operatorname{gcd}(a, b)=1$.

Fact: $T(f)$ is obtained by gluing b identical subtrees at distance a / b from η.

Symmetry of $T(f)$

Example: Roots of $f=t^{2 / 3}+t^{5 / 6}$ and its conjugates, $a / b=2 / 3$.

Obtaining $T\left(f_{P}^{\text {nod }}\right)$ from Abhyankar's Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root of f is $a / b<1$, with $\operatorname{gcd}(a, b)=1$.

Fact: $T(f)$ is obtained by gluing b identical subtrees at distance a / b from η.

Abhyankar $\Rightarrow T\left(f_{P}^{\text {nod }}\right)$ can then be obtained by gluing a identical new subtrees at distance $(b / a)-1$ from η, where

New subtree metric $=($ Old subtree metric $) \cdot b / a$.

Obtaining $T\left(f_{P}^{\text {nod }}\right)$ from Abhyankar's Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root of f is $a / b<1$, with $\operatorname{gcd}(a, b)=1$.

Fact: $T(f)$ is obtained by gluing b identical subtrees at distance a / b from η.

Abhyankar $\Rightarrow T\left(f_{P}^{\text {nod }}\right)$ can then be obtained by gluing a identical new subtrees at distance $(b / a)-1$ from η, where

New subtree metric $=($ Old subtree metric $) \cdot b / a$.

General case: Transform trees for each irreducible nodal factor separately, and then glue them back together maintaining 'expected overlaps'.

Distance from η changes according to $(a / b) \rightsquigarrow(b / a)-1$. New subtree metric $=($ Old subtree metric $) \cdot b / a$.

Outline

(1) Introduction
(2) Definitions and computational tools

3 Overview of inductive proof strategy

4 Computing change in conductor during induction
(5) Computing change in discriminant during induction
(6) Proof in action in an example

An explicit example. $f(x)=$ $\left(x^{2}-t\right)\left(x^{2}-2 t\right)(x-1)(x-1+t)(x-1+2 t)(x-1+3 t)$.

Replacement steps:

$$
\begin{aligned}
& f(x)=\left(x^{2}-t\right)\left(x^{2}-2 t\right)(x-1)(x-1+t)(x-1+2 t)(x-1+3 t) \\
& f_{P_{2}}(x)=(x-t)(x-(1 / 2) t) \quad f_{P_{1}}(x)=x(x+1)(x+2)(x+3) \\
& \downarrow \\
& f_{P_{3}}(x)=(x-1)(x-(1 / 2))
\end{aligned}
$$

An explicit example. $f(x)=$ $\left(x^{2}-t\right)\left(x^{2}-2 t\right)(x-1)(x-1+t)(x-1+2 t)(x-1+3 t)$.

Replacement steps:

$$
\begin{aligned}
& f(x)=\left(x^{2}-t\right)\left(x^{2}-2 t\right)(x-1)(x-1+t)(x-1+2 t)(x-1+3 t) \\
& f_{P_{2}}(x)=(x-t)(x-(1 / 2) t) \quad f_{P_{1}}(x)=x(x+1)(x+2)(x+3) \\
& \downarrow \\
& \quad f_{P_{3}}(x)=(x-1)(x-(1 / 2)) \\
& \text { 3A: } \delta(-\operatorname{Art}):-\operatorname{Art}\left(\mathcal{X}_{f}\right)-\left[-\operatorname{Art}\left(\mathcal{X}_{f_{1}}\right)-\operatorname{Art}\left(\mathcal{X}_{f_{2}}\right)\right]=2+4 . \\
& \text { 3B: } \delta(\Delta): \Delta_{f}-\left[\Delta_{f_{1}}+\Delta_{f_{2}}\right]=2\binom{4}{2}+4=12+4 . \\
& \text { 3C: } \delta(-\operatorname{Art}) \leq \delta(\Delta): 2+4 \leq 12+4 . \\
& \text { 3A: } \delta(-\operatorname{Art}):-\operatorname{Art}\left(\mathcal{X}_{f_{2}}\right)-\left[-\operatorname{Art}\left(\mathcal{X}_{f_{3}}\right)\right]=2 . \\
& \text { 3B: } \delta(\Delta): \Delta_{f_{2}}-\Delta \Delta_{f_{3}}=2\binom{2}{2}=2 . \\
& \text { 3C: } \delta(-\operatorname{Art}) \leq \delta(\Delta): 2 \leq 2 .
\end{aligned}
$$

Finally ...

Thank you!

