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What are conductors and minimal discriminants?

Degenerating family
of hyperelliptic curves

Measures of
degeneracy

1 . Artin conductor 2 . Minimal discriminant

Main Question: How are measures 1 and 2 related? Inequality?

Example: X/C((t)), y2 = f (x), genus g = 3 hyperelliptic

f (x) = (x2 − t)(x2 − 2t)(x − 1)(x − 1+ t)(x − 1+ 2t)(x − 1+ 3t)

−Art(X) = 8, ∆X = 18.



How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

If g = 1, then −Art(X) = ∆X . [Ogg-Saito formula]
If g = 2, then Liu showed that −Art(X) ≤ ∆X . He showed
that equality does not always hold.

Question: Does −Art(X) ≤ ∆X hold for hyperelliptic curves of
arbitrary genus g?
Today: Yes, if the residue characteristic is > 2g + 1. [S.]



How are conductors and minimal discriminants related?

Earlier results: (small genus, all residue characteristics)

If g = 1, then −Art(X) = ∆X . [Ogg-Saito formula]
If g = 2, then Liu showed that −Art(X) ≤ ∆X . He showed
that equality does not always hold.

Question: Does −Art(X) ≤ ∆X hold for hyperelliptic curves of
arbitrary genus g?
Today: Yes, if the residue characteristic is > 2g + 1. [S.]



Outline

1 Introduction

2 Definitions and computational tools

3 Overview of inductive proof strategy

4 Computing change in conductor during induction

5 Computing change in discriminant during induction

6 Proof in action in an example



Notation

R : C[[t]]
K : C((t)), field of Laurent series
K : ∪n≥1 C((t1/n)), field of Puiseux series

ordt=0 : t-adic valuation K → Q ∪ {∞},
normalized using ordt=0(t) = 1.

X : smooth hyperelliptic K -curve
g : genus of X



Minimal discriminant

Definition: The minimal discriminant ∆X of X/K is the
nonnegative integer

∆X := min
f (x)∈R[x ]

y2=f (x), eqn. for X

ordt=0 (disc(f ))︸ ︷︷ ︸
∈R

.

An example:

C1 : y2 = x(x − t)(x − 2t)(x − 3t)  disc(f ) = 12.
C2 : y ′2 = x ′(x ′ − 1)(x ′ − 2)(x ′ − 3)  disc(f ) = 0.

Here C1 ∼=K C2 via x ′ = x
t , y

′ = y
t2  ∆X = 0.



Artin conductor

For a curve C defined over C, let χtop(C) denote the topological
Euler characteristic of Can.

Definition: For any regular model X → SpecR of X → SpecK , let

−Art(X ) := χtop( Xt=0︸ ︷︷ ︸
curve over C

)− (2 − 2g).

Definition: The (negative of the) Artin conductor −Art(X) of
X/K is the nonnegative integer

−Art(X) := min
X→SpecR

proper, regular
model for X/K

[−Art(X )]

(= −Art(Xmin)).

Remark: If P is a closed point of X , and BlP(X ) is the blowup of
X at P , then −Art(BlP(X )) = [−Art(X )] + 1.
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Why care about conductors and minimal discriminants?

Fact: The invariants

∆X = [−Art(X)] = 0

if and only if X has a smooth model over SpecR and are strictly
> 0 otherwise.



Main result

Theorem (S.)
Let K be the fraction field of a Henselian discrete valuation ring.
Let X be a smooth hyperelliptic curve over K of genus g ≥ 1.
Assume that the residue characteristic is > 2g + 1.
Then,

−Art(X) ≤ ∆X .



Computing conductors

B ⊂
Branch divisor

Y

XNorm(Y,K(X)) := X

P1
K

SpecR SpecK

finite 2:1

Riemann-Hurwitz formula:

−Art(X ) = 2χtop(Yt=0)− χtop(Bt=0)− (2 − 2g).

Example: Y = P1
R , f (x) = x2g+2 − t, B : f = 0.

χtop(Yt=0) =

χtop(P1
C) = 2.

χtop(Bt=0) =

χtop(pt) = 1.

−Art(X ) =

2 · 2 − 1 − (2 − 2g) = 2g + 1.
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Computing discriminants

Goal: Visualize relative distances of roots  
Reorganize roots of f ∈ R [x ] into a metric tree T (f )

Example 1: Roots of f are K -rational

f (x) =(x − 7)(x − 7 − t)(x − 5)(x − 5 − t)
(x − 1 − 2t)(x − 1 − 2t − t2)(x − 1 − 3t)(x − 1 − 3t − t2)

Roots of f = {7, 7+t, 5, 5+t, 1+2t, 1+2t+t2, 1+3t, 1+3t+t2}

Idea: Partition the roots successively, using their residues mod t,
mod t2, etc..



Metric tree of a polynomial

7, 7 + t, 5, 5 + t, 1 + 2t,
1 + 2t + t2, 1 + 3t, 1 + 3t + t2

7, 7 + t 5, 5 + t

1 + 2t, 1 + 2t + t2,
1 + 3t, 1 + 3t + t2

1 + 2t,
1 + 2t + t2

1 + 3t,
1 + 3t + t2

η

5

5 + t1

1 + 2t + t2

1 + 2t

1

1 + 3t

1 + 3t + t2

1

1

7

7 + t

1
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Computing discriminants

Example 2: Roots of f are not K -rational

Roots of f = t2/3 + t5/6 and all its Galois conjugates
= {t2/3 + t5/6, t2/3 − t5/6, ωt2/3 − ω2t5/6, ωt2/3 + ω2t5/6,

ω2t2/3 + ωt5/6, ω2t2/3 − ωt5/6}

The roots of f have t1/6-adic expansions.
Draw the metric tree using t1/6-adic expansions.
Rescale all lengths by 1/6.



Metric tree of a polynomial

t2/3 + t5/6, t2/3 − t5/6,
ωt2/3 − ω2t5/6, ωt2/3 + ω2t5/6,
ω2t2/3 + ωt5/6, ω2t2/3 − ωt5/6

t2/3 + t5/6,
t2/3 − t5/6

ωt2/3 − ω2t5/6,
ωt2/3 + ω2t5/6

ω2t2/3 + ωt5/6,
ω2t2/3 − ωt5/6

η

ωt2/3 + ω2t5/6

ωt2/3 − ω2t5/6

t2/3 + t5/6t2/3 − t5/6

1/6
ω2t2/3 + ωt5/6

ω2t2/3 − ωt5/6
2/3



The metric function and discriminants

Definition Let α, β be two roots of f .

(α|β)η := ordt=0 (α− β)

= Length of common segment of path from η to α and β.

η

ωt2/3 + ω2t5/6ω2t2/3 − ωt5/6
2/3

(ω2t2/3 − ωt5/6|ωt2/3 + ω2t5/6)η = 2/3

η

t2/3 + t5/6t2/3 − t5/6

2/3

(t2/3 − t5/6|t2/3 + t5/6)η = 5/6



The metric function and discriminants

Definition Let α, β be two roots of f .

(α|β)η := ordt=0 (α− β)

= Length of common segment of path from η to α and β.

Fact Let (αi) be the collection of roots of f . Then,

∆f =
∑
i 6=j

(αi |αj)η.
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Explicit regular models

Remark: Suffices to find ONE proper regular model X such that

(−Art(X) ≤)

−Art(X ) ≤ ∆X .

Our choice: Jung’s method for resolving surface singularties. Let

∆f := ordt=0(disc(f )) for any f ∈ R [x ]
div(f ) := Divisor of f in P1

R

Yf := Embedded resolution of the pair (P1
R , div(f ))

Xf := Normalization of Yf in K(X)

Jung ⇒ The model Xf → SpecR of X is (almost) regular.

Explicit regular model: Let y2 = f (x) be an equation for X with
f (x) ∈ R [x ] and ∆X = ∆f . Set X = Xf .
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Overview of proof for −Art(Xf ) ≤ ∆f .

Strategy: Induction on ∆f .

STEP 1: Base case: Prove that whenever div(f ) ⊂ P1
R is regular,

we have −Art(Xf ) = ∆f .

STEP 2: Inductive step: If div(f ) is not regular, replace f by a
collection (f sm

P , f nod
P )P∈div(f )Sing .

STEP 3: Let (−Art(XfP )) = (−Art(Xf sm
P

)) + (−Art(Xf nod
P

)), and
let ∆fP = ∆f sm

P
+∆f nod

P
.

3A: Compute δ(−Art) := −Art(Xf )−
∑

P∈div(f )Sing(−Art(XfP )).
3B: Compute δ(∆) := ∆f −

∑
P∈div(f )Sing ∆fP .

3C: Prove δ(−Art) ≤ δ(∆).

STEP 4: Termination: Reduce to div(f ) regular after finitely many
replacements.
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Replacement operation and χtop

Main ingredients in calculation:
Jung’s method gives a natural way to identify
(Yf sm/nod

P ,t=0,Bf sm/nod
P ,t=0) with a closed subset of

(Yt=0,Bt=0).
Use the additivity of χtop and inclusion-exclusion/excision for
(Yf sm/nod

P ,t=0,Bf sm/nod
P ,t=0) ⊂ (Yt=0,Bt=0).

 an explicit formula for δ(−Art) :=
−Art(Xf )−

∑
P∈div(f )Sing [(−Art(Xf sm

P
)) + (−Art(Xf nod

P
))]

(Omitted).



(YfP ,t=0,BfP ,t=0) is a closed subset of (Yf ,t=0,Bf ,t=0)

f (x) = (x − 7)(x − 7 − t)(x − 5)(x − 5 − t)
(x − 1 − 2t)(x − 1 − 2t − t2)(x − 1 − 3t)(x − 1 − 3t − t2)

f sm
3 (x) = (x − 2)(x − 2 − t)(x − 3)(x − 3 − t).

Yf ,t=0 Bf ,t=0 = •

7
7 + t

5
5 + t

Yf sm
3 ,t=0

1 + 2t
1 + 2t + t2
1 + 3t
1 + 3t + t2
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Computing change in discriminant

Remarks:
It is enough to relate T (f ) to T (f sm

P ) and T (f nod
P ).

If we do it carefully, we simultaneously obtain a proof of
termination of induction.

T (f sm
P ) is a subtree of T (f ).

T (f nod
P ) is more tricky!



T (f sm
P ) is a subtree of T (f )

f (x) = (x − 7)(x − 7 − t)(x − 5)(x − 5 − t)
(x − 1 − 2t)(x − 1 − 2t − t2)(x − 1 − 3t)(x − 1 − 3t − t2)

f sm
3 (x) = (x − 2)(x − 2 − t)(x − 3)(x − 3 − t).

η

5

5 + t

1 + 2t + t2

1 + 2t1 + 3t

1 + 3t + t2

7

7 + t



Obtaining T (f nod
P ) from Abhyankar’s Inversion Formula

Special case: Suppose that
f is irreducible,
the valuation of a root of f is a/b < 1, and,
gcd(a, b) = 1.

Fact: T (f ) is obtained by gluing b identical subtrees at distance
a/b from η.



Symmetry of T (f )
Example: Roots of f = t2/3 + t5/6 and its conjugates, a/b = 2/3.

η

ωt2/3 + ω2t5/6

ωt2/3 − ω2t5/6
1/6

t2/3 + t5/6t2/3 − t5/6

1/6

ω2t2/3 + ωt5/6

ω2t2/3 − ωt5/6

1/6

2/3



Obtaining T (f nod
P ) from Abhyankar’s Inversion Formula

Special case: Suppose f is irreducible, and the valuation of a root
of f is a/b < 1, with gcd(a, b) = 1.

Fact: T (f ) is obtained by gluing b identical subtrees at distance
a/b from η.

Abhyankar ⇒ T (f nod
P ) can then be obtained by gluing a identical

new subtrees at distance (b/a)− 1 from η, where

New subtree metric = (Old subtree metric) · b/a.

General case: Transform trees for each irreducible nodal factor
separately, and then glue them back together maintaining
‘expected overlaps’.
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T (f ) T (f nod
P )

Distance from η changes according to (a/b) (b/a)− 1.
New subtree metric = (Old subtree metric) · b/a.

1/6

η

2/3

(1/4) = (1/6) · (3/2)

η

1/2 = (3/2)− 1

  

1/2 = (1/4) · (2/1)

η

1 = (2/1)− 1
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An explicit example. f (x) =
(x2 − t)(x2 − 2t)(x − 1)(x − 1+ t)(x − 1+ 2t)(x − 1+ 3t).

Replacement steps:
f (x) = (x2 − t)(x2 − 2t)(x − 1)(x − 1 + t)(x − 1 + 2t)(x − 1 + 3t)

fP2(x) = (x − t)(x − (1/2)t)

fP3(x) = (x − 1)(x − (1/2))

fP1(x) = x(x + 1)(x + 2)(x + 3)

3A: δ(−Art) : − Art(Xf )− [−Art(Xf1)− Art(Xf2)] = 2 + 4.
3B: δ(∆): ∆f − [∆f1 +∆f2 ] = 2

(4
2
)
+ 4 = 12 + 4.

3C: δ(−Art) ≤ δ(∆): 2 + 4 ≤ 12 + 4.

3A: δ(−Art) : − Art(Xf2)− [−Art(Xf3)] = 2.
3B: δ(∆): ∆f2 −∆f3 = 2

(2
2
)
= 2.

3C: δ(−Art) ≤ δ(∆): 2 ≤ 2.
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fP2(x) = (x − t)(x − (1/2)t)

fP3(x) = (x − 1)(x − (1/2))

fP1(x) = x(x + 1)(x + 2)(x + 3)

3A: δ(−Art) : − Art(Xf )− [−Art(Xf1)− Art(Xf2)] = 2 + 4.
3B: δ(∆): ∆f − [∆f1 +∆f2 ] = 2

(4
2
)
+ 4 = 12 + 4.

3C: δ(−Art) ≤ δ(∆): 2 + 4 ≤ 12 + 4.

3A: δ(−Art) : − Art(Xf2)− [−Art(Xf3)] = 2.
3B: δ(∆): ∆f2 −∆f3 = 2

(2
2
)
= 2.

3C: δ(−Art) ≤ δ(∆): 2 ≤ 2.



Finally …

Thank you!
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