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ABSTRACT. We enrich the classical count that there are two complex lines meeting four
lines in space to an equality of isomorphism classes of bilinear forms. For any field k, this
enrichment counts the number of lines meeting four lines defined over k in P3k, with such
lines weighted by their fields of definition together with information about the cross-ratio
of the intersection points and spanning planes. We generalize this example to an infinite
family of such enrichments, obtained using an Euler number in A1-homotopy theory. The
classical counts are recovered by taking the rank of the bilinear forms.

1. INTRODUCTION

It is a classical result that there are exactly two lines meeting four general lines in P3
C,

and we briefly recall a proof. The lines meeting three of the four are pairwise disjoint and
their union is a degree 2 hypersurface. The intersection of the fourth line with the hyper-
surface is then two points, one on each of the two lines meeting all four. There is a lovely
description in, for example, [EH16, 3.4.1]. Over an arbitrary field k, the hypersurface is
defined over k, but the two intersection points, and therefore the two lines, may have
coefficients in some quadratic extension k[

√
L] of k. For example, over the real numbers

R, there may be two real lines or a Galois-conjugate pair of C-lines.

In this paper, we give a restriction on the field of definition of the two lines combined
with other arithmetic-geometric information on the configurations of the lines. More gen-
erally, we give an analogous restriction on the lines meeting 2n− 2 codimension 2 hyper-
planes in Pn with n odd.

These restrictions are equalities in the Grothendieck–Witt group GW(k) of the ground
field k, defined to be the group completion of the semi-ring of isomorphism classes of
non-degenerate, symmetric bilinear forms on finite dimensional vector spaces valued in
k. The Grothendieck–Witt group arises in this context as the target of Morel’s degree
homomorphism in A1-homotopy theory. A feature of A1-homotopy theory is that it pro-
duces results over any field. These results can record arithmetic-geometric information
about enumerative problems, classically posed over the complex numbers, which admit
solutions using algebraic topology. We show this is the case for the two enumerative
problems just described and answer the question of what information is being recorded.
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This latter question has a fun answer. Given a line L meeting four pairwise non-
intersecting lines L1,L2,L3, and L4, there are four distinguished points L ∩ L1, L ∩ L2, L ∩ L3
and L ∩ L4 on L. The line L is isomorphic to P1

k(L)
∼= L, where k(L) denotes the field of

definition of L, giving four points on P1
k(L), which therefore have a cross-ratio, which we

denote as λL. The planes in P3
k containing L are likewise parametrized by a scheme iso-

morphic to P1
k(L), and therefore the four planes determined by L and L1, L and L2, L and

L3 and finally, L and L4 also have a cross-ratio, denoted µL.

Let 〈a〉 in GW(k) denote the isomorphism class of the one-dimensional bilinear form
k × k → k defined (x, y) 7→ axy, for a in k∗/(k∗)2. For a separable field extension k ⊆ E,
let TrE/K : GW(E) → GW(k) denote the map which takes a bilinear form β : V × V → E
to the composition TrV×V ◦β : V × V → k of β with the field trace TrE/K : E→ K. Then the
following equality holds in GW(k).

Theorem 1. Let k be a field of characteristic not 2, and let L1, L2, L3, and L4 be general lines in
P3
k defined over k. Then

∑
lines L such that L∩Li 6=∅

for i=1,2,3,4

Trk(L)/k〈λL − µL〉 = 〈1〉+ 〈−1〉.

The condition that the lines are general means there is an open set of four-tuples of lines
such that the theorem holds. In this case, this open set contains the lines that are pairwise
non-intersecting and such that the fourth is not tangent to the quadric of lines meeting
the first three.

This result generalizes as follows. Let π1, π2, . . . , π2n−2 be general codimension two
hyperplanes defined over k in Pn

k for n odd. Suppose that L is a line in Pn, defined
over the field k(L), which intersects all of the πi. L corresponds to a 2-dimensional
subspace W of k(L)n+1. The intersection points πi ∩ L determine (2n − 2) points of
PW ∼= P1

k(L). The space of hyperplanes containing W corresponds to the projective space
P(k(L)n+1/W) ∼= Pn−2

k(L). Choosing coordinates on PW and P(k(L)n+1/W), let [ci0, ci1] be
the coordinates of πi ∩ L = [ci0, ci1], and let [di0, di1, . . . , di,n−2] be the coordinates of the
plane spanned by πi and L. (The choice of these coordinates does not matter, i.e., Theorem
2 below will be true for any choices of coordinates.) We will define a certain normalized
lift of these homogeneous coordinates to coordinates (ci0, ci1) and (di0, di1, . . . , di,n−2) re-
spectively in Definition 10. The count of the lines Lmeeting the πi will weight each line L
by Trk(L)/L〈i(L)〉where i(L) is determined by the normalized lifts of the intersection points
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πi ∩ L and the codimension 1 hyperplanes spanned by πi and L by the formula

(1) i(L) = det



d10c10 · · · di0ci0 · · · d2n−2,0c2n−2,0
...

...
...

d1jc10 · · · aijdi0 · · · d2n−2,jc2n−2,0
...

...
...

d1,n−2c10 · · · di,n−2ci0 · · · d2n−2,n−2c2n−2,0
d10c11 · · · di0ci1 · · · d2n−2,0c2n−2,1

...
...

...
d1jc11 · · · dijci1 · · · d2n−2,jc2n−2,1

...
...

...
d1,n−2c11 · · · di,n−2ci1 · · · d2n−2,n−2c2n−2,1


Theorem 2. Let k be a field. Let n be odd and let π1, π2, . . . , π2n−2 be general codimension two
hyperplanes defined over k in Pn

k . Assume either that k is perfect, or that the extension k ⊆ k(L)
is separable for every line L that meets all the planes πi. Then

∑
lines L such that L∩πi 6=∅

for i=1...2n−2

Trk(L)/k〈i(L)〉 =
1

2

(2n− 2)!

n!(n− 1)!
(〈1〉+ 〈−1〉).

There are many tools available for studying GW(k). The Milnor conjecture, proven by
Voevodsky, identifies the associated graded ring of the filtration of GW(k) by powers of
the fundamental ideal with the étale cohomology group H∗(k,Z/2), giving rise to invari-
ants valued in H∗(k,Z/2), or equivalently Milnor K-theory, the first of which are the rank,
discriminant, Hasse-Witt, and Arason invariants [Mil69] [Voe03a] [Voe03b]. For many
fields, much is understood about GW(k), for example giving algorithms to determine if
two given sums of the generators 〈a〉 for a ∈ k∗/(k∗)2 of GW(k) are equal, as well as
computations of GW(k). See for example [Lam05]. Applying invariants of GW(k) to the
equalities of Theorems 1 and 2 produces other equalities, which may be valued in more
familiar groups. A selection of such results follows.

For k = R the real numbers, applying the signature to both sides of Theorem 1, we
see that if the two lines are real, the sign of λL − µL must be reversed for the two lines.
More generally, in the situation of Theorem 2 for k = R, half of the real lines will have i(L)
negative and half positive. The question of which lines are real in both these situations has
been previously studied. Sottile has shown that the lines may all be real [Sot97, Theorem
C]. Work on similar questions is also found in [Vak06]. There are also connections to the
B. and M. Shapiro conjecture, proven by Eremenko and Gabrielov [EG02] and Mukhin,
Tarasov, and Varchenko [MTV09b] [MTV09a]. For example, the positive solution to the
Shapiro conjecture gives a large class of examples where the lines meeting four lines in
space are real. There is a nice exposition in [Sot11].

For k = Fq a finite field with q elements, applying the discriminant produces, for
example:
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Corollary 3. Let k = Fq be a finite field with q elements, with q odd. Let L1,L2,L3,L4 be general
lines defined over k in P3

k. If a line L meeting Li for i = 1, . . . , 4 is defined over Fq2 , then

λL − µL =

{
is a non-square for q ∼= 1 mod 4

is a square for q ∼= 3 mod 4.

The proofs of Theorems 1 and 2 and Corollary 3 can be found in Section 6. For these
proofs, we use a strategy based on joint work [KW17] of Jesse Kass and the second named
author. Namely, we take a classical enumerative problem over the complex numbers that
admits a solution using an Euler class from algebraic topology, and rework it over a field
k using an enriched Euler class valued in GW(k). To obtain an enumerative result over k,
one then needs a geometric interpretation of certain local indices, which is guessed on a
case-by-case basis.

In the present case, there is a classical count of the appropriate number of complex lines
as a power of the first Chern class of the line bundle S∗∧S∗ on an appropriate Grassman-
nian, where S∗ ∧ S∗ denotes the wedge of the dual tautological bundle with itself. This
characteristic class is equivalent to the Euler class of ⊕Ni=1S∗ ∧ S∗ for an appropriateN. In
[KW17], an Euler class is constructed in GW(k) for relatively oriented bundles of rank r
on a smooth, compact r-dimensional scheme over k, as a sum over the zeros of a section
with only isolated zeros of a local contribution from each zero. This local contribution can
be expressed as a local degree in A1-homotopy theory. As in the classical case, a config-
uration of codimension 2 hyperplanes (or more precisely the set of equations whose zero
loci are the hyperplanes) determines a section of ⊕Ni=1S∗ ∧ S∗. We therefore have that a
fixed element of GW(k) is a sum over the lines of the local degree in GW(k) of a section,
in analogy to the fixed Z-valued Euler class on the complex Grassmiannian from classical
algebraic topology expressed as a sum over the lines of the local Z-valued degrees at the
zero locus of a section. In the complex case, these latter local degrees happen to be gener-
ically all one because complex manifolds and algebraic sections are orientable, giving the
number of lines as an Euler class, but over other fields, interesting local degrees or indices
arise.

Readers who would like to avoid A1-homotopy theory may do so, as the construc-
tion of the Euler class of [KW17] uses as local indices the classes from the Eisenbud–
Khimshiashvili–Levine Signature Formula, which are the local A1-degrees, but also have
a concrete commutative algebra construction that a computer can compute. In the case
of Theorem 1, we also find the stronger result that the cross ratios of the points and the
planes switch when we switch the two lines over their fields of definition, i.e., µL = λL̃
and µL̃ = λL (see Theorem 17 and Example 6.1), which can be verified independently.
Note, however, that it is more than just analogy that links our results to algebraic topol-
ogy; there is a full-fledged theory of A1-homotopy theory providing a connection [MV99]
[Mor12]. Moreover, there is a machine producing enriched results of the form given in
Theorems 1 and 2. Once the machine has produced an enrichment, there is guess-work
involved in identifying local indices, but once this is accomplished, the end result is by
design independent of A1-homotopy theory and the machine, and one can then, at least
in some cases, provide alternate proofs that are also independent. A main tool here is the
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Euler class of [KW17]. There are older constructions of Euler classes in A1-homotopy the-
ory in [BM00] [Mor12, 8.2], more recent ones in [DJK18] [LR18], and other constructions
of Euler classes for schemes independent of A1-homotopy theory in [GI80] [MS96] [BS99]
[BS00] [BDM06]. See also [Fas08] [AF16] [Lev17b] for results on Euler classes or useful
tools for their computation.

Matthias Wendt has a lovely alternate computation of the Euler classes of ⊕Ni=1S∗ ∧ S∗,
using a Schubert Calculus he has developed [Wen18b]. He also considers the resulting
applications to enumerative geometry. His results as well as methods are different from
the ones given here. His work [Wen18b] builds on his previous work [Wen18a] and his
joint work [HW17] with Hornbostel.

Unique to the present paper are the given computations of the local GW(k)-degrees or
indices/weights of the lines and their geometric interpretations, and the resulting Theo-
rems 1 and 2 and consequences. We also give computations of the relevant Euler classes
and take the opportunity to further the study of the Euler class of [KW17].

This paper fits into a recent program that could be called A1-enumerative geometry,
or enumerative geometry enriched in quadratic forms. See [Hoy14] [KW16a] [KW16b]
[Lev17b] [Lev17a] [KW17] [Lev18a] [Lev18b] [Wen18b].

1.1. Outline. In Section 2, we give the necessary results and notation to have a well-
defined Euler class of⊕Ni=1S∗∧S∗ in GW(k) as a sum over lines of a local index or degree.
In Section 3, we give formulas for the local index, in particular in terms of the i(L) for
Theorem 2 above. In Section 4, we give computations of Euler classes, one using argu-
ments of Fasel/Levine. In Section 5, we prove the connection between the local indices
and the cross-ratios appearing in Theorem 1. Section 6 contains the proofs of the stated
results in the introduction and an explicit example.

2. LOCAL COORDINATES ON GRASSMANNIANS, ORIENTATIONS ON VECTOR BUNDLES,
AND EULER NUMBERS

A vector bundle V → X is oriented (or weakly oriented if you prefer) if it is equipped with
an isomorphism detV ∼= L⊗2 for a line bundle L on X. A smooth scheme X is oriented if
its tangent bundle is. Let U be a Zariski open set. A section in L⊗2(U) is called a square
if it is of the form s ⊗ s for s in L(U). A trivialization ψ : V |U

∼=→ O|rU is compatible with a
given orientation if the composition detOr|U → detV |U → L⊗2 takes the canonical section
in detOr(U) to a square.

There is an Euler class or number in GW(k) for an oriented vector bundle of rank n
on a smooth projective oriented n-dimensional scheme. In fact, the weaker notion of
a relatively oriented vector bundle V → X of rank n with X smooth, projective, and di-
mension n over k suffices to define an Euler class. V relatively oriented means that
Hom(det TX, detV) is oriented. While we do not need the notion of relative orientation
for this paper, we prove some results in this greater generality for their own interest.
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Let n be odd, and let Gr(2, n + 1) denote the Grassmannian parametrizing lines in Pn
k .

By a line L in Pn
k , we mean a closed point of this Grassmannian. After basechange to k(L),

L corresponds to a closed subscheme of Pn
k(L).

Let S be the tautological bundle on Gr(2, n+1). Then the line bundleO(1) correspond-
ing to the Plucker embedding of Gr(2, n + 1) is Λ2S∗. Let Q denote the quotient bundle
on Gr(2, n+ 1), defined by

0→ S → An+1 → Q→ 0

as the cokernel of the inclusion of the tautological bundle into the trivial bundle.

Let {e1, . . . , en+1} denote a basis for kn+1, and let {φ1, . . . , φn+1} denote the dual basis
of (kn+1)∗. The 2-dimensional subspace ken ⊕ ken+1 spanned by {en, en+1} determines a
k-point of Gr(2, n+ 1). There are local coordinates

Spec k[x1, . . . , xn−1, y1, . . . , yn−1]→ Gr(2, n+ 1)

of Gr(2, n + 1) around this point such that (x1, . . . , xn−1, y1, . . . , yn−1) corresponds to the
span of {ẽn, ẽn+1}, where {ẽ1, . . . , ẽn+1} is the basis of kn+1 defined by

ei for i = 1, . . . , n− 1∑n−1
i=1 xiei + en for i = n∑n−1
i=1 yiei + en+1 for i = n+ 1.

These local coordinates determine a local trivialization of T Gr(2, n+1) using the canonical
trivialization of the tangent space of A2(n−1). We will say that coordinates are compatible
with a given orientation if the corresponding local trivialization of the tangent bundle
is. Let {φ̃1, . . . , φ̃n+1} be the dual basis for the basis {ẽ1, . . . , ẽn+1} of kn+1. The content of
the following proof is contained in [KW16a, Lemma 42], but we include the proof in the
stated generality for completeness.

Lemma 4. There is an orientation of T Gr(2, n + 1) such that the local coordinates given by the
maps Speck[x1, . . . , xn−1, y1, . . . , yn−1]→ Gr(2, n+ 1) just described are compatible.

Proof. Let {e1, . . . , en+1} and {e ′1, . . . , e
′
n+1} denote two chosen bases for kn+1. As above,

consider the corresponding local coordinates on the open subsetsU andU ′ of Gr(2, n+1).
Under the canonical identification of T Gr(2, n + 1) with Hom(S,Q) the corresponding
trivialization T Gr(2, n+ 1)|U ∼= O2(n−1)U corresponds to the basis of T Gr(2, n+ 1)(U) given
by

{φ̃n ⊗ ẽi : i = 1, n− 1} ∪ {φ̃n+1 ⊗ ẽi : i = 1, n− 1}

and similarly for U ′. (Note the slight abuse of notation when we consider, say ẽ1 at the
point p to be an element of k(p)n+1/(kẽn⊕kẽn+1).) These trivializations determine clutch-
ing functions for T Gr(2, n+ 1), i.e., isomorphisms

(2) O2(n−1)|U∩U ′ → T Gr(2, n+ 1)|U∩U ′ → O2(n−1)|U∩U ′ ,

which are given by the change-of-basis matrix relating

φ̃n ⊗ ẽ1, φ̃n ⊗ ẽ2, . . . , φ̃n ⊗ ẽn−1, φ̃n+1 ⊗ ẽ1, φ̃n+1 ⊗ ẽ2, . . . , φ̃n+1 ⊗ ẽn−1
to

φ̃ ′n ⊗ ẽ ′1, φ̃ ′n ⊗ ẽ ′2, . . . , φ̃ ′n ⊗ ẽ ′n−1, φ̃ ′n+1 ⊗ ẽ ′1, φ̃ ′n+1 ⊗ ẽ ′2, . . . , φ̃ ′n+1 ⊗ ẽ ′n−1.
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LetA ∈ GLn+1O(U∩U ′) be the change of basis matrix relating {ẽ1, . . . , ẽn+1} to {ẽ ′1, . . . , ẽ
′
n+1}.

Since kẽn ⊕ kẽn+1 = kẽ ′n ⊕ kẽ ′n+1, we have that A determines sections B ∈ GL2O(U ∩
U ′), given by the change-of-basis matrix relating {ẽn, ẽn+1} and {ẽ ′n, ẽ

′
n+1}, as well as C ∈

GLn−1O(U∩U ′), given by the change-of-basis for the quotient bundle relating {ẽ1, . . . , ẽn−1}
and {ẽ ′1, . . . , ẽ

′
n−1} (note the same abuse of notation as above). The clutching functions (2)

are therefore (C−1)t ⊗ B ∈ GL2(n−1)(U ∩ U ′), where (C−1)t denotes the inverse transpose
of C. Therefore the determinant bundle has clutching functions (detC)−(n−1)(detB)2 ∈
O∗(U ∩ U ′). Since n is odd, (detC)−(n−1)(detB)2 is a square of an element of O∗(U ∩ U ′),
and the lemma follows. �

Let V be the rank 2n − 2 vector bundle ⊕2n−2i=1 Λ
2S∗. Given 2n − 2 codimension two

subspaces π1, π2, . . . , π2n−2 of kn+1, choose a basis of linear forms αi and βi in (kn+1)∗

vanishing on each πi. Let σ be the section of V , given by σ = (α1 ∧ β1, . . . , α2n−2 ∧ β2n−2).
(More explicitly, any point L of Gr(2, n + 1) corresponds to a 2-dimensional subspace W
of k(L)⊕4. The elements αi and βi tensored with k(L) then restrict to functionals αi|W and
αi|W on W. The fiber of Λ2S∗ at L is canonically identified with W∗ ∧W∗, and (α1|W ∧

β1|W, . . . , α2n−2|W ∧ β2n−2|W) determines the section σ.)

The following lemma is standard, but we include it for clarity.

Lemma 5. Let L be a point of Gr(2, n + 1). Then σ(L) = 0 if and only if L meets all of the
hyperplanes π1, π2, . . . , π2n−2.

Proof. If a codimension 2 hyperplane π is cut out by the two linear forms α,β and a di-
mension 2 subspace L is spanned by the vectors e, f, then (α ∧ β)(e ∧ f) = 0 if and only
if both α and β simultaneously vanish on some linear combination of e and f, or in other
words, if π ∩ L 6= ∅. �

We use the construction of the Euler number in GW(k) of [KW17]. Namely, for an
oriented vector bundle E of rank r on a smooth proper oriented k-scheme of dimension
n = r, equipped with a section σwith only isolated zeros, there is an Euler number e(E , σ)
in GW(k), defined as a sum of local degrees or indices over the zeros of σ,

e(E , σ) =
∑

p:σ(p)=0

indp σ.

We apply this construction to the vector bundle V = ⊕2n−2i=1 Λ
2S∗ on Gr(2, n + 1). For this,

we identify a large subscheme of sections of V with only isolated zeros. For any such
section σ, and L a point of Gr(2, n+ 1) such that σ(L) = 0, the local degree or index indL σ
in GW(k) (defined in [KW17, Section 4]) is described as follows. Choose oriented local
coordinates. Choose an oriented local trivialization of V . This identifies σwith a function
σ : Ar

k → Ar
k. Then indL σ is the local A1-degree in the sense of Morel [Mor12]. (This is

discussed in more detail in [KW16a].)

If σ has a zero at a point p such that the corresponding function (f1, . . . , fr) : A
r
k → Ar

k

satisfies the condition that the Jacobian determinant J = det( ∂fi
∂xj

)ij is non-zero in k(p), then
we say that σ has a simple zero. The local degree at a simple zero p such that k ⊆ k(p)
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is a separable field extension is computed in [KW17, Proposition 32], and we include the
statement for clarity.

Proposition 6. Suppose σ has a simple zero at a point p. (In other words, suppose that a corre-
sponding function (f1, . . . , fr) : Ar

k → Ar
k satisfies the condition that the Jacobian determinant

J = det( ∂fi
∂xj

)ij is non-zero in k(p).) Then the corresponding local degree is Trk(p)/k〈J〉 if k ⊆ k(p)
is a separable field extension.

We now identify many sections of V with isolated zeros. Let i : G := Gr(2, n+ 1)→ PN

be the Plücker embedding. Let P̌N be the dual projective space parametrizing hyper-
planes in PN. Let

Z := {(H1, H2, . . . , H2n−2) ∈ (P̌N)2n−2 | dim(G ∩H1 ∩ · · · ∩H2n−2) 6= 0}.
Let S := {(σ1, . . . , σ2n−2) ∈ H0(G,Λ2S∗)2n−2 | σi 6= 0 ∀ i}. We have a natural map

p : S→ (P̌N)2n−2,

which is G2n−2
m,k -bundle, and we let U := S \ p−1(Z). The purpose of the following lemma

and corollary is to show that the complement of U is codimension at least 2, from which
it will follow that e(V, σ) is independent of σ for σ in U.

Lemma 7. Z is closed and codimZ ≥ 2.

Proof. For any irreducible subvariety W ⊂ PN with dimW ≥ 1 and for any hyperplane
H ∈ P̌N, we have dim(W∩H) = dimW−1 if and only ifH 6⊃W, and dimW = dim(W∩H)
otherwise (see, e.g., [Sha94, I 6.2 Theorem 5]). By applying this in turn to the finitely many
irreducible components of each of W = G,G ∩ H1, . . . , G ∩ H1 ∩ H2 ∩ · · · ∩ H2n−3, we see
that Z =

⋃2n−2
i=1 π−1

i (Zi), where Zi ⊂ (P̌N)i is the subset

Zi := {(H1, H2, . . . , Hi) ∈ (P̌N)i |

Hi ⊃ A, for some irreducible component A of G ∩H1 ∩ · · · ∩Hi−1},

and πi : (P̌N)2n−2 → (P̌N)i is the projection on the first i factors. Note that Zi could
equivalently be written

Zi = {(H1, H2, . . . , Hi) ∈ (P̌N)i | dim(G ∩H1 ∩ · · · ∩Hi) > 2n− 2− i}.

We will first show Zi is a closed subset of (P̌N)i. To see this, consider the incidence
variety I ⊂ (P̌N)i ×PN defined

I := {(H1, H2, . . . , Hi, x) : H1, . . . , Hi ∈ P̌N, x ∈ G ∩H1 ∩ · · · ∩Hi}.

The projection map restricted to I gives a map f : I → (P̌N)i, and Zi is the locus in (P̌N)i

of points where the fiber has larger than expected dimension, which is closed by, e.g.,
[Sha94, I 6.3 Theorem 7].

We will now show codimZi ≥ 2. Consider the map π0i : (P̌N)i → (P̌N)i−1 given by
projection onto the first i − 1 factors. For each (H1, . . . , Hi−1) in (P̌N)i−1 and each ir-
reducible component A of G ∩ H1 ∩ · · · ∩ Hi−1, the dimension of A satisfies dim(A) ≥
2n − 2 − (i − 1) ≥ 1, and therefore also dimA ≥ 1. Let P,Q be two distinct points on A.
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Then Z ′A := {H ∈ P̌N | H ⊃ A} ⊂ P̌N is contained in the intersection of the two distinct
hyperplanes {H ∈ P̌N | P ∈ H} and {H ∈ P̌N | Q ∈ H}, and therefore has codimension ≥ 2.
Thus the fibers of the restriction of π0i to Zi have codimension≥ 2. It follows ([Sha94, I 6.3
Theorem 7]) that codimZi ≥ 2.

Another application of ([Sha94, I 6.3 Theorem 7]) shows that codimπ−1
i (Zi) ≥ 2 for

every i, and therefore codimZ ≥ 2. �

Let U be the subset of H0(G, (Λ2S∗)2n−2) defined U := S \ p−1(Z).

Corollary 8. A section σ of V = ⊕2n−2i=1 ∧2 S∗ in U has only isolated zeros and e(V, σ) is inde-
pendent of the choice of such σ.

For clarity, we remark that if σ is defined over an extension field E of k, then e(V, σ) is an
element of GW(E) and the claimed independence means that e(V, σ) is the base-change
to E of e(V, σ ′) for some section σ ′ defined over k.

Proof. A section σ of V corresponding to a point of U has only isolated zeros because
the zeroes of σ = (σ1, . . . , σ2n−2) are precisely the points in the intersection of G and the
hyperplanes corresponding to σi.

Since codimZ ≥ 2, we also have codimp−1(Z) ≥ 2, so it follows thatH0(V)−U has codi-
mension≥ 2. By the proof of [KW17, Lemma 57], the fact thatH0(V)−U has codimension
≥ 2 implies that any two points of U can be connected by affine lines in U, after possibly
passing to an odd degree field extension. (This latter property, which is described in more
detail in [KW17, Definition 35 and Corollary 36], is related to A1-chain connectedness as
in [AM11, Section 2.2].) By [KW17, Theorem 3], e(V, σ) is independent of the choice of σ
in U. �

3. A FORMULA FOR THE LOCAL INDEX

Proposition 9. Let σ be the section σ = ⊕2n−2i=1 αi ∧ βi of V . Suppose that σ has a simple zero
at the point L = Span(en, en+1) of Gr(2, n + 1). Let αi =

∑
j aijφj and βi =

∑
j bijφj be the

expansion of the linear forms αi and βi in terms of the chosen k-basis. Then

indL σ =

〈
det



· · · (ai1bin+1 − ain+1bi1) · · ·
...

· · · (aijbin+1 − ain+1bij) · · ·
...

· · · (ain−1bin+1 − ain+1bin−1) · · ·
· · · (ainbi1 − ai1bin) · · ·

...
· · · (ainbij − aijbin) · · ·

...
· · · (ainbin−1 − ain−1bin) · · ·



〉
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Proof. L corresponds to the origin in the affine patch Spec k[x1, . . . , xn−1, y1, . . . , yn−1]. Triv-
ialize each of the 2n − 2 summands of V in a neighbourhood of L using the section φ̃n ∧
φ̃n+1 of S∗∧S∗. Let (f1, f2, . . . , f2n−2) be functions on the affine patch Spec k[x1, . . . , xn−1, y1, . . . , yn−1]

be defined by the relations αi ∧ βi = fi · φ̃n ∧ φ̃n+1.

We now need to compute the matrix of partial derivatives of these functions at the
origin and take its determinant. First we have the change of basis formulae

φi =


φ̃i + xiφ̃n + yiφ̃n+1 for i = 1, . . . , n− 1

φ̃n for i = n
φ̃n+1 for i = n+ 1

.

Now

αi ∧ βi = (
∑
j

aijφj)∧ (
∑
j

bijφj)

= [
(n−1∑
j=1

aij(φ̃j + xjφ̃n + yjφ̃n+1)
)
+ ainφ̃n + ain+1φ̃n+1]∧

[
(n−1∑
j=1

bij(φ̃j + xjφ̃n + yjφ̃n+1)
)
+ binφ̃n + bin+1φ̃n+1]

Since we will be evaluating the matrix of partial derivatives at en ∧ en+1, we only need to
focus on terms that have φ̃n∧ φ̃n+1 or φ̃n+1∧ φ̃n. Also, we only need to pick out the linear
terms in this expansion, so we may ignore the constant term and higher order terms in
the Taylor expansion using the variables xi and yi. Therefore

αi ∧ βi =
[
. . .+

∑
j

(aijbin+1 − ain+1bij)xj +
∑
j

(ainbij − aijbin)yj + . . .
]
φ̃n ∧ φ̃n+1.

Computing partial derivatives and evaluating at en ∧ en+1 gives the formula in the state-
ment of the lemma. �

We wish to express the local index at a simple zero L of σ in terms of the line L and
the configuration of the πi. When k ⊆ k(L) is a separable, we do this in terms of the
field of definition k(L), the configuration of the intersection points of πi ∩ L on L, and
the configuration of hyperplanes spanned by πi and L in the space of hyperplanes of Pn

containing L, in the following manner.

LetW ⊂ k(L)n+1 denote the dimension 2 vector subspace corresponding to the line L, so
L is canonically isomorphic to PW. The space of hyperplanes containingW is canonically
identified with the projective space P(k(L)n+1/W). LetW∗ denotes the k(L)-linear dual of
W, and similarly for (k(L)n+1/W)∗.

Although the intersection points L ∩ πi and the hyperplanes spanned by the πi and L
only determine points of PW and P(k(L)n+1/W), respectively, the section σ = ⊕2n−2i=1 αi∧βi
distinguishes points ofW∗ and (k(L)n+1/W)∗. Namely, since L∩πi is non-empty, we have
that the restrictions of αi and βi toW are linearly dependent, i.e., αi ∧ βi is in

Ker := Ker((k(L)n+1)∗ ∧ (k(L)n+1)∗ →W∗ ∧W∗).
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There is a natural map

(3) Ker→ (k(L)n+1/W)∗ ⊗W∗.

(To see this, note that the map (k(L)n+1)∗⊗(k(L)n+1/W)∗ → Ker /((k(L)n+1/W)∗∧(k(L)n+1/W)∗)
is surjective with kernel (k(L)n+1/W)∗⊗(k(L)n+1/W)∗ ⊂ (k(L)n+1)∗⊗(k(L)n+1/W)∗, giving
rise to a natural isomorphism Ker /((k(L)n+1/W)∗∧(k(L)n+1/W)∗) ∼=W∗⊗(k(L)n+1/W)∗.)

Choose bases of W and k(L)n+1/W, giving rise to bases of their duals and therefore
coordinates of PW and P(k(L)n+1/W). Let [ci0, ci1] be the coordinates of πi ∩ L = [ci0, ci1],
and let [di0, di1, . . . , di,n−2] be the coordinates of the plane spanned by πi and L.

Definition 10. A lift of the homogeneous coordinates [ci0, ci1] and [di0, di1, . . . , di,n−2] to coor-
dinates (ci0, ci1) and (di0, di1, . . . , di,n−2) of vectors inW∗ and (k(L)n+1/W)∗ are normalized if
(di0, di1, . . . , di,n−2)∧ (ci0, ci1) is the image of αi ∧ βi under the map (3).

Let i(L) be defined as in Equation (1) for normalized coordinates (ci0, ci1) and (di0, di1, . . . , di,n−2)
of πi ∩ L and the plane spanned by πi and L, respectively, for i = 1, 2, . . . , 2n− 1.

Proposition 11. Suppose that L is a simple zero of σ such that k ⊆ k(L) is a separable field
extension. Then indL σ = Trk(L)/k〈i(L)〉.

Proof. By Proposition 6, it is sufficient to show that the Jacobian determinant J equals i(L),
namely J = i(L) in k(L)∗/(k(L)∗)2. In particular, we may assume that k(L) = k, and we do
this now for notational simplicity. By Lemma 4, we may compute Jwith local coordinates
coming from a basis {e1, . . . , en+1} such that L corresponds to W = Span(en, en+1). Since
changing the basis of W and kn/W changes i(L) by a square (n is odd), we may also
compute i(L) using the basis {en+1, en} of W and the basis of kn/W determined by the
images of {e1, . . . , en−1}. This choice determines the normalized coordinates of πi ∩ L and
the plane spanned by πi and L.

Since πi = {αi = 0, βi = 0} intersects L, there is a unique vi in W such that αi(vi) =
βi(vi) = 0. It follows that that the vectors (ain, ai,n+1) and (bin, bi,n+1) are linearly depen-
dent in the linear dualW∗ ofW. In particular, by replacing (αi, βi) with either (αi−cβi, βi)
for some constant c or (−βi, αi), we may assume that (ain, ai,n+1) = (0, 0).

By Proposition 9, it follows that

(4) indL σ = 〈det



· · · ai1bin+1 · · ·
...

· · · aijbin+1 · · ·
...

· · · ain−1bin+1 · · ·
· · · −ai1bin · · ·

...
· · · −aijbin · · ·

...
· · · −ain−1bin · · ·


〉.
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Note that [bi,n+1,−bin] are coordinates in PW for the hyperplane {αi = βi = 0} ∩W in
W; [ai1, ai2, . . . , ain−1] are coordinates in P(kn/W) for the plane spanned by πi and L; and
that (bi,n+1,−bin) and (ai1, ai2, . . . , ain−1) are the normalized coordinates for our chosen
bases. �

4. THE EULER CLASS OR NUMBER OF V

Let X be a smooth, proper scheme of dimension n over k. Let E → X and E ′ → X be
vector bundles of ranks r and r ′ such that r + r ′ = n and E ⊕ E ′ is relatively orientable.
Suppose that σ and σ ′ are global sections of E and E ′ respectively that only have isolated
zeros admitting Nisnevich local coordinates and such that e(E⊕E ′, σ⊕ασ ′) is independent
of α for all α ∈ k∗. Let e(E ⊕ E ′) := e(E ⊕ E ′, σ⊕ σ ′).
Proposition 12. If r ′ is odd, then e(E ⊕ E ′) is an integer multiple of the hyperbolic form h =
〈−1〉+ 〈1〉 in GW(k).

Remark 13. The hypothesis that e(E ⊕ E ′, σ ⊕ ασ ′) is independent of α for all α ∈ k∗ should
be unnecessary, because the Euler number should always be independent of the section. How-
ever, since this is not proven at present, we prove the proposition under this hypothesis, which is
sufficient for our purposes.

This proof is extracted from M. Levine’s argument that the Euler characteristic of an
odd dimensional scheme is a multiple of h [Lev17b, Theorem 7.1]. M. Levine also cred-
its J. Fasel. Since the result and the context of the definitions is different, we give the
proposition and proof.

GW(k) is the zeroth graded summand of the graded ring KMW(k) introduced by Morel,
and then refined in joint work with Hopkins, presented in [Mor12, Chapter 3]. KMW(k)
has generators [u] of degree 1 for u in k∗, and η of degree −1. The element 〈u〉 in GW(k)
corresponds to the element 1+ η[u].

Proof. Note that the set of isolated zeros of σ⊕ ασ ′ does not depend on α for any α in k∗.
Let x be such a zero of σ⊕ σ ′. We first show that

(5) indx(σ⊕ ασ ′) = 〈α〉r
′
indx(σ⊕ σ ′)

for any α ∈ k∗.

indx(σ⊕σ ′) is computed by the procedure in [KW17]. Heuristically, this computation is
accomplished by considering the section σ⊕ σ ′ locally to be a function An → An and the
index is the Jacobian determinant. Replacing σ⊕σ ′ by σ⊕ασ ′ has the effect of multiplying
the last r ′ coordinate projections of the associated function An → An by α, which in turn
scales the Jacobian determinant that computes the local index by αr ′ .

Precisely, choose an open neighborhood U of x with Nisnevich local coordinates φ :
U → Spec k[x1, x2, . . . , xn] near x. Choose local trivializations ψ : E |U → OrU and ψ ′ :
E ′|U → Or ′U such that ψ ⊕ ψ ′ and φ are compatible with the relative orientation. Then
ψσ = (f1, . . . , fr) and ψσ ′ = (f ′1, . . . , f

′
r) where fi and f ′i are in O(U). We choose gi for

i = 1, . . . , r in k[x1, . . . , xn] and g ′i in k[x1, . . . , xn] for i = 1, . . . , r ′ such that fi − φ∗gi
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and f ′i − φ∗g ′i are in a sufficiently high power of mx. For notational convenience, de-
fine (h1, . . . hr+r ′) by (h1, . . . hr+r ′) = (g1, . . . , gr, g

′
1, . . . , g

′
r). Then (h1, . . . hr+r ′) defines the

complete intersection

OZ,x ∼= k[x1, . . . , xn]mφ(x)
/〈h1, . . . , hr+r ′〉

and indx(σ⊕ ασ ′) is represented by the bilinear pairing on OZ,x
(a, b) 7→ η(ab),

where η is the k-linear map η : OZ,x → k as constructed in [SS75, p. 182]. For ex-
ample, when J = det(∂hi

xj
)i,j is non-zero in k(x), η can be chosen to be any linear map

with η(J) = dimkOZ,x without changing the isomorphism class of the resulting form.
For our purposes, it suffices to know that η scales k-linealy with the element of ∆ of
OZ,x⊗kOZ,x defined by choosing aij in k[x1, . . . , xn]⊗kk[x1, . . . , xn] such that hj⊗1−1⊗hj =∑

ij aij(xi ⊗ 1 − 1 ⊗ xi), and letting ∆ be the image of det(aij). In particular, both J and ∆
are multiplied by αwhen hi replaced by αhi for some fixed i. Changing the section σ⊕σ ′
to σ⊕ ασ ′ changes each f ′i to αf ′i and leaves the fi fixed. We may therefore choose new gi
and g ′i by leaving the gi fixed and changing g ′i to αg ′i. Therefore new aij can be defined by
keeping aij the same for j ≤ r and changing aij to αaij for j = r + 1, . . . , r + r ′. Therefore
∆ is changed to αr ′∆, giving (5).

For field extensions k ⊆ L, let EL⊕E ′L denote the base change of the vector bundle E ⊕E ′
to L. By functoriality, the Euler number e(EL ⊕ E ′L) in GW(L) is the pullback of e(E ⊕ E ′)
in GW(k), i.e. e(EL ⊕ E ′L) = e(E ⊕ E ′)⊗k L.

Furthermore, e(EL ⊕ E ′L) in GW(L) can be computed with the section σ + ασ ′ for any α
in L∗. Thus

e(EL ⊕ E ′L) = e(EL ⊕ E ′L, σ⊕ ασ ′) =
∑

x:σ(x)=0,σ ′(x)=0

indx(σ⊕ ασ ′).

Since r ′ is odd, we have

indx(σ⊕ ασ ′) = 〈α〉r
′
indx(σ⊕ σ ′) = 〈α〉 indx(σ⊕ σ ′),

by (5). It follows that

(6) e(EL ⊕ E ′L) = 〈α〉e(EL ⊕ E ′L).
for all α in L∗.

To simplify notation, let e = e(EL ⊕ E ′L) in GW(k) and let eL = e⊗k L be the pullback to
GW(L). So (6) says that 〈α〉eL = eL for all α in L∗.

We now show that e is an integer multiple of h. By [Lam05, IX Milnor’s Theorem 3.1 p.
306], it suffices to show that ek(t) is an integer multiple of h. There is a map

∂t : K
MW
0 (k(t))→ KMW

−1 (k)

corresponding to the local ring k[t](t) [Mor12, Theorem 3.15]. This map has the following
two properties:

(1) For any class f in GW(k), the class 〈t〉fk(t) in GW(k(t)) ∼= KMW
0 (k(t)) has image ηf

in KMW
−1 (k(t)) under ∂t.
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(2) For any class f in GW(k), the class ∂fk(t) = 0.

It follows that
0 = ∂t(ek(t)) = ∂t(〈t〉ek(t)) = η(e),

where the first equality is (2), the second is (6), and the third is (1).

There is a canonical isomorphism KMW
−1 (k) ∼= W(k) [Mor12, Lemma 3.10]. Under this

isomorphism ηf inKMW
−1 (k) corresponds to the image of f under the quotient map GW(k)→

GW(k)/Zh ∼= W(k) for any f in GW(k).

Therefore ek(t) is 0 in W(k), whence a multiple of h and the claim follows. �

Corollary 14.

e(V) = 1

2

(2n− 2)!

n!(n− 1)!
h.

Proof. We know that e(V) is a multiple of h and that its rank is (2n−2)!
n!(n−1)!

from [EH16, Propo-
sition 4.12]. �

We now give an alternate, more explicit proof of this calculation when n = 4 using the
local index calculations from Section 3.

Proposition 15. Let S be the tautological bundle of Gr(2, 4). Let V = ⊕4i=1Λ2(S∗). Then e(V) =
〈1〉+ 〈−1〉.

Proof. As in Section 3, we will compute this Euler characteristic by adding up local contri-
butions from the explicit section σ of V coming from four lines in P3

k. By Corollary 8, we
may choose a k-rational section σ with only isolated zeros for this computation. We may
moreover assume that the two lines corresponding to the two zeroes of σ are k-rational,
by explicit example (see for instance Section 6.1). Classical arguments (see for instance
[EH16, Section 3.4.1]) show that these two lines can be taken to be two skew lines in the
same ruling of a quadric surface in P3

k, so after a change of coordinates, we may assume
that the two zeroes of σ are the lines corresponding to the subspaces L ′ := Span(e1, e2)
and L := Span(e3, e4) of k4.

We will now show that a careful choice of αi, βi (which in turn determine the section
σ), and local coordinates around L ′ and L lets us show that the matrices computing indL ′ σ
and indL σ are related by row operations and sign swaps.

For any index i, since L = Span(e3, e4) intersects Li, it follows that {φ1, φ2, αi, βi} are
linearly dependent. In terms of the chosen basis expansions for αi and βi, this translates
to

det

[
ai3 ai4
bi3 bi4

]
= 0.

Since we may replace the pair (α,βi) by any pair of linearly independent vectors in
Span(αi, βi), by either adding a multiple of βi to αi or by swapping αi and βi, we may
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assume that ai3 = ai4 = 0without any loss of generality. Similarly from the condition that
L ′ = Span(e1, e2) intersects Li, it follows that

det

[
ai1 ai2
bi1 bi2

]
= 0,

and as before, we can use this relation and further change αi, βi to assume that bi1 = bi2 =
0.

With these choices, we get

indL σ = det


· · · ai1bi4 · · ·
· · · ai2bi4 · · ·
· · · −ai1bi3 · · ·
· · · −ai2bi3 · · ·

 .
To compute indL ′ σ, we need to choose local coordinates in Gr(2, 4) around this point,

and a local trivialization of Λ2(S) compatible with the chosen orientation. By Lemma 4,
if we set

f1 = e3, f2 = e4, f3 = e1, f4 = e2,

and define {f̃1, f̃2, f̃3, f̃4} by 
fi for i = 1, 2
x1f1 + x2f2 + f3 for i = 3
y1f1 + y2f2 + f4 for i = 4,

then x1, x2, y1, y2 gives us local coordinates around L ′ = Span(f3, f4) = Span(e1, e2). Let
{ψ̃1, ψ̃2, ψ̃3, ψ̃4} be the dual basis for the basis {f̃1, f̃2, f̃3, f̃4} of kn+1. Then as before it follows
that ψ̃3∧ψ̃4 gives a trivialization ofΛ2(S) around Span(e1, e2) compatible with the chosen
orientation and hence also a trivialization of V . With these choices, if we now redo the
index calculation in Proposition 9, we obtain the formulae

αi ∧ βi = (ai1ψ3 + ai2ψ4)∧ (bi3ψ1 + bi4ψ2)

(ai1ψ̃3 + ai2ψ̃4)∧ (bi3(ψ̃1 + x1ψ̃3 + x2ψ̃4) + bi4(ψ̃2 + y1ψ̃3 + y2ψ̃4)),

and,
αi ∧ βi =

[
. . .− ai2bi3x1 − ai2bi4y1 + ai1bi3x2 + ai1bi4y2 + . . .

]
ψ̃3 ∧ ψ̃4.

This implies that

indL ′ σ = det


· · · −ai2bi3 · · ·
· · · −ai2bi4 · · ·
· · · ai1bi3 · · ·
· · · ai1bi4 · · ·

 .
From these explicit formulae, we see that the matrices computing indL ′ σ and indL σ are
related by swapping the first and fourth rows, and by multiplying each of the second
and third rows by −1. This in turn implies that if indL ′ σ = 〈c〉, then indL σ = 〈−c〉, and
therefore e(V) = 〈c〉+ 〈−c〉 = 〈1〉+ 〈−1〉. �
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5. THE LOCAL INDEX IN TERMS OF CROSS RATIOS

Definition 16. Let L1, L2, L3, L4 be four lines in P3
k and let L be another line in P3 that meets all

four lines. Assume that the four intersection points of L with the Li are distinct. Also assume that
the four planes spanned by L and the Li are distinct. Let λL be the cross ratio of the four points
L ∩ L1, L ∩ L2, L ∩ L3, L ∩ L4 on the line L. Let µL be the cross ratio of the four planes containing
L and each of the four lines L1, L2, L3, L4 in the P1

k of planes containing L in P3
k.

The goal of this section is to prove the following theorem.

Theorem 17. Let V = ⊕4i=1Λ2S∗. Let L1, L2, L3, L4 be four lines in P3
k such that

• the corresponding section ⊕4i=1αi ∧ βi has only simple zeroes,
• for any line Lmeeting all four lines, the four intersection points L∩Li are pairwise distinct,

and,
• for any line L meeting all four lines, the four planes spanned by L and each of the Li are

pairwise distinct.

(The locus of such lines is an open dense subset of Gr(2, 4)4.) Let λL, µL be the associated cross
ratios as in Definition 16. There exists a section σ of V such that for all L meeting L1, L2, L3, L4,
we have

indL σ = Trk(L)/k〈λL − µL〉

Proof. By Proposition 6 (originally from [KW17]), it is enough to show that indL σ com-
puted over the field of definition of the line k(L) equals 〈λL − µL〉.

Recall that the line Li is cut out by the two hyperplanes αi =
∑

j aijφj and βi =
∑

j bijφj.
As in the proof of Proposition 15, we may assume that the two lines meeting these four
lines are L = Span(e3, e4) and L ′ = Span(e1, e2) and that ai3 = ai4 = bi1 = bi2 = 0
without any loss of generality. We have explicit projective coordinates [0 : 0 : z3 : z4] on
L = Span(e3, e4) induced from the projective coordinates [z1 : z2 : z3 : z4] on P3

k. In these
coordinates, the point L ∩ Li is [0 : 0 : −bi4 : bi3]. Since cross ratios are invariant under
automorphisms of L and since [0 : 0 : z3 : z4] 7→ [0 : 0 : −z4 : z3] is an automorphism of L,
it follows that λL is the cross ratio of the four points [bi3 : bi4] for i = 1, 2, 3, 4. Similarly,
with L ′ = Span(e1, e2), we have that λL ′ is the cross ratio of the four points [ai1 : ai2].

We will now pick explicit coordinates [w1 : w2] on the P1
k of 2-planes containing L =

Span(e3, e4) in P3
k to compute µL. The isomorphism is given by mapping [w1 : w2] to the

2-plane Span(e3, e4,−w2e1+w1e2) in P3. In these coordinates, the plane containing L and
Li, namely Span(e3, e4,−ai2e1 + ai1e2), is [ai1 : ai2]. Therefore µL is the cross ratio of the
four points [ai1 : ai2] for i = 1, 2, 3, 4. Similarly µL ′ is the cross ratio of the four points
[bi3 : bi4] for i = 1, 2, 3, 4.
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Pick A,B ∈ GL2(k) such that their respective images A,B ∈ PGL(k) satisfy

B[b13 : b14] = [1 : 0] A[a11 : a12] = [1 : 0]

B[b23 : b24] = [1 : 1] A[a21 : a22] = [1 : 1]

B[b33 : b34] = [0 : 1] A[a31 : a32] = [0 : 1]

B[b43 : b44] = [1 : λL] A[a41 : a42] = [1 : µL].

Now change coordinates on the underlying P3 using the block matrix
[
A 0
0 B

]
in GL4(k).

In these new coordinates, applying Proposition 9 we get

indL σ = c det


0 1 0 λL
0 1 1 λLµL
−1 −1 0 −1
0 −1 0 −µL

 = c(λL − µL),

where c ∈ k is an overall nonzero constant coming from the fact that we have picked lifts
A and B of the elements A,B in PGL2(k). We can now eliminate c by scaling the section σ
by 1/c, since this scales the local index by the same factor.

Fix a section σ such that indL σ = 〈λL − µL〉. We will show that we also have indL ′ σ =
〈λL ′ − µL ′〉. This follows from the following two facts.

• As justified in the previous paragraphs, replacing L by L ′ switches the two cross
ratios, so we have (λL ′ − µL ′) = (µL − λL).
• The proof of Proposition 15 shows that indL ′ σ = 〈−1〉 indL σ. �

6. PROOFS OF MAIN THEOREMS AND AN EXAMPLE

Proof of Theorem 1. Corollary 8 tells us that we may compute e(V) by making any auxiliary
choice of section σ ∈ H0(Gr(2, n + 1),V)(k) \ Z(k). We would like to use the explicit
section σ = (α1∧β1, α2∧β2), α3∧β3, α4∧β4) arising from four general lines L1, L2, L3, L4
in P3

k for our computations. To be able to apply Proposition 15, which in turn relies on
Proposition 6, we need the section σ to have only simple zeroes. Further, to be able to
interpret the local index in terms of cross-ratios as in Theorem 17, we need the cross-
ratios to be well-defined, which in turn needs the points of intersection of the simple zero
Lwith the four lines Li to be pairwise distinct, and the planes spanned by the simple zero
L and each of the four lines Li to also be pairwise distinct. All of these conditions are
satisfied by an open subset of lines (L1, L2, L3, L4) ∈ Gr(2, 4)4. This open locus for instance
contains the locus of four lines that are pairwise non intersecting, and such that the fourth
line is not tangent to the unique quadric containing the first 3. The proof of the theorem
is now a direct application of Proposition 15 and Theorem 17. �

The proof of Theorem 2 is similar to the proof of Theorem 1.

17



Proof of Theorem 2. For an open subset of the product of Grassmannians parametrizing
2n − 2-tuples of codimension 2 planes, the corresponding sections σ = ⊕2n−2i=1 αi ∧ βi sat-
isfies the condition that its zeroes are all isolated and simple (see Corollary 8 and the
definition just before Proposition 6). If we assume that either that k is perfect or that
k(L)/k is separable for all zeroes L of σ, then we may compute the local index over the
field of definition k(L) of the line and then apply Trk(L)/k to obtain the local index over k.
The theorem now follows from Corollary 8, Proposition 11 and Corollary 14. �

Proof of Corollary 3. By Theorem 1, we have that TrF
q2
/Fq〈λL − µL〉 is a square for q ≡ 1

mod 4 and is a non-square for q ≡ 3 mod 4. Moreover, Disc(TrF
q2
/Fq〈a〉) is a non-square

if a is a square and a square if a is a non-square by, for example, [CP84, II.2.3]. �

6.1. Example. We conclude the paper with an explicit example of Theorem 1. Let

L1 : [t : s] 7→ [t : 0 : 0 : s]

L2 : [t : s] 7→ [t : s : t : s]

L3 : [t : s] 7→ [s+ t : 2s : 2s+ 2t : s]

L4 : [t : s] 7→ [3t : t : s : 3s]

be the parametric equations of 4 lines in P3 = Proj k[x, y, z,w]. When the characteristic is
not 2, 3 or 5, these lines pairwise do not intersect and the first three lines lie on the quadric
xy−zw. (In characteristic 3 the lines L2 and L3 intersect, and we can instead work with the
example where we replace L3 alone by [−(s+ t) : −s : s+ t : s]. Similarly, in characteristic
5 the lines L3 and L4 intersect, and we can replace L4 alone by [−2t : t : 2s : −s].) The
parametric equations of the lines that meet all four lines are L : [t : s] 7→ [s : t : t : s] and
L ′ : [t : s] 7→ [−s : t : −t : s], with

L1 ∩ L = [1 : 0 : 0 : 1]↔ [0 : 1] L1 ∩ L ′ = [−1 : 0 : 0 : 1]↔ [0 : 1]

L2 ∩ L = [1 : 1 : 1 : 1]↔ [1 : 1] L2 ∩ L ′ = [−1 : 1 : −1 : 1]↔ [1 : 1]

L3 ∩ L = [1 : 2 : 2 : 1]↔ [2 : 1] L3 ∩ L ′ = [−1 : 2 : −2 : 1]↔ [2 : 1]

L4 ∩ L = [3 : 1 : 1 : 3]↔ [1 : 3] L4 ∩ L ′ = [−3 : −1 : 1 : 3]↔ [−1 : 3].

The formula for the cross ratio of four points z1, z2, z3, z4 in k is (z4−z1)(z2−z3)
(z2−z1)(z4−z3)

. This leads to
λL = 1/3 and λL ′ = −1/5.

Now we choose explicit projective coordinates on the P1
k of planes containing L and the

P1
k of planes containing L ′ in order to compute the cross ratios µL and µL ′ . For the former,

let [t : s] be the coordinates of the 2-plane Span((1, 0, 0, 1), (0, 1, 1, 0), (t, s, 0, 0)) in P3, and
for the latter let it be the coordinates of the 2-plane Span((−1, 0, 0, 1), (0,−1, 1, 0), (t, s, 0, 0)).
In these coordinates, we have

Span(L, L1) = [1 : 0] Span(L ′, L1) = [1 : 0]

Span(L, L2) = [1 : −1] Span(L ′, L2) = [1 : 1]

Span(L, L3) = [1 : −2] Span(L ′, L3) = [1 : 2]

Span(L, L4) = [3 : 1] Span(L ′, L4) = [3 : 1], .
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which leads to µL = −1/5 = λL ′ and µL ′ = 1/3 = λL, and λL − µL = 8/15 = −(λL ′ − µL ′).
Finally we have 〈8/15〉+ 〈−8/15〉 = 〈1〉+ 〈−1〉 in GW(k).

APPENDIX A. ENRICHED LOCAL INDICES FOR NON-RATIONAL SECTIONS
BY BORYS KADETS, PADMAVATHI SRINIVASAN, ASHVIN A. SWAMINATHAN,

LIBBY TAYLOR, AND DENNIS TSENG

A.1. Motivation. To illustrate the goal of this section, consider the following example.
Suppose we have four distinct lines π1, . . . , π4 ∈ P3 such that the union π1 ∪ · · · ∪ π4 is
defined over our base field k, but each individual line πi may not be. Equivalently, we
have an étale k-algebra E of degree 4 over k, and a map SpecE → Gr(2, 4) over k. We
could extend k and apply Theorem 1, but we would like to leverage the fact that the map
SpecE→ Gr(2, 4) is defined over k and obtain an invariant in GW(k).

As before, we let S be the tautological subbundle on Gr(2, 4) and letL = S∗∧S∗. Unlike
in Section 2, we no longer have a canonical section of L⊕4 associated to our lines and our
choice of their defining equations. However, the key idea is to notice that we do have a
canonical section of the bundle ResE/k L, which is a priori a twist of L⊕4 but in fact turns
out to be isomorphic to L⊕4 over k, and we can compute the enriched Euler class of this
canonical section by expressing it as a sum of local indices, just as was done in the proofs
of Theorems 1 and 2. In what follows, we compute these local indices in a very general
setting.

A.2. Setup. Let k be a field, let ksep be a fixed separable closure of k, and let E be an étale
k-algebra of degree m. Let V be a vector bundle of rank r on a smooth k-scheme X of
dimensionmr equipped with a relative orientation, and let σ ∈ VE(XE) be a section.

Definition 18. Let ResE/k V be the vector bundle (defined over k) whose sections on an open set
U are given by VE(UE).

The section σ induces a global section σRes of ResE/k V . There is a natural homomor-
phism ϕ : E → Endk(ResE/k V) sending e ∈ E to the map of multiplication by e, and an
embedding τ : V → ResE/k V . We fix a choice of k-basis α1 = 1, α2, . . . , αm of E, which
determines an isomorphism Vm → ResE/k V given by Lemma 19.

Lemma 19. The map Vm → ResE/k V defined on sections by (s1, . . . , sm) 7→ ∑qϕ(αq)τ(sq) is
an isomorphism of vector bundles over k.

Proof. This map is well-defined and is readily checked to be an isomorphism on fibers. �

We assume that the section (σ1, . . . , σm) ∈ V(X)m corresponding to σ via the isomor-
phism in Lemma 19 has a 0-dimensional vanishing scheme that is étale over k. Let
P ∈ X be one such zero having residue field k(P) over k. Let j1, . . . , jm : E → ksep be
the geometric points of E over k. Each ji induces a map ji : (ResE/k V)(X) → Vksep(Xksep),
and the map ji ◦ τ : V(X)→ Vksep(Xksep) does not depend on i. From the proof of Proposi-
tion 20, the condition on (σ1, . . . , σm) having isolated simple zeros is equivalent to (j1 ◦
σ, . . . , jm ◦ σ) ∈ Vksep(X)m having isolated simple zeroes.
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A.3. Local indices of section of ResE/k V . The following result gives an explicit formula
for the local index of σRes ∈ (ResE/k V)(X); the answer is related to the Jacobian determi-
nant at P of the section (j1(σ), . . . , jm(σ)) of Vmksep by an explicit factor.

Proposition 20. Let J(σ) ∈ GLmr(k
sep) be the Jacobian matrix for the map Amr → Amr induced

by (j1(σ), . . . , jm(σ)) ∈ Vmksep(Xksep) with respect to a trivialization of Vm and local Nisnevich
coordinates in an open neighborhood of P that are compatible with the relative orientation over k.
Then

indP(σRes) = Trk(P)/k
(
〈(detA)−r · det J(σ)〉

)
∈ GW(k),

where A is the n× n matrix whose row-p, column-q entry is jp(αq).

Remark 21. The determinant detAmay not be defined over k, but the product (detA)−r ·det J(σ)
is. Also, (detA)2 ∈ k×/k×2 is the discriminant of the minimal polynomial of a generator of E/k;
moreover, (detA)2 is used to define the relative discriminant in the case k is a number field and E
is a field extension.

Proof of Proposition 20. Let (σ1, . . . , σm) ∈ V(X)m be the section corresponding to σRes ∈
(ResE/k V)(X) under the isomorphism Vm → ResE/k V of Lemma 19. So by definition σRes =∑

qϕ(αq)τ(σq) and σ =
∑

q αqσq, where we regard the σi as sections of VE under the
inclusion k ↪→ E. Therefore, j1(σ)...

jm(σ)

 =


∑

q j1(αq)σq
...∑

q jm(αq)σq)

 =

 j1(α1) · · · j1(αm)
... . . . ...

jm(α1) · · · jm(αm)

σ1...
σm


showing σ1...

σm

 =

 j1(α1) · · · j1(αm)
... . . . ...

jm(α1) · · · jm(αm)

−1 j1(σ)...
jm(σ)

(7)

The matrix in (7) is actually anmr×mrmatrix with blocks of size r× r. The ij block is the
r× r identity matrix times ji(αj). By the computation of the local index in [KW17, Propo-
sition 32] using the Jacobian, we have that indP(σRes) is the Trk(P)/k

(
〈det J(σ1, . . . , σm)〉

)
,

where J(σ1, . . . , σm) is the Jacobian determinant of (σ1, . . . , σm) : Amr → Amr. By the chain
rule and (7), we find that

indP(σRes) = Trk(P)/k
(
〈det J(σ1, . . . , σm)〉

)
= Trk(P)/k

(
〈detA−r · det J(σ)〉)

= Trk(P)/k
(
〈(detA)−r · det J(σ)〉) ∈ GW(k). �
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