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Chapter 1

Zeta functions of a class of Artin—Schreier
curves with many automorphisms

Irene Bouw, Wei Ho, Beth Malmskog, Renate Scheidler, Padthagrinivasan,
and Christelle Vincent

Abstract This paper describes a class of Artin—Schreier curves rgénag results
of Van der Geer and Van der Vlugt to odd characteristic. Theraarphism group
of these curves contains a large extraspecial group as asybdrecise knowledge
of this subgroup makes it possible to compute the zeta fomat the curves in this
class over the field of definition of all automorphisms in thbgroup.
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1.1 Introduction

In [10], Van der Geer and Van der Vlugt introduced a class @ihASchreier curves
over a finite field with a highly rich structure. For exampleese curves have a very
large automorphism group that contains a large extraspegjeoup as a subgroup.
Results of Lehr—Matignonmn [18] show that the automorphisougs of these curves
are “maximal” in a precise sense. (Lehr—Matignon call thidgaaction) A further
remarkable property is that all these curves are supensindthis yields an easy
way of producing large families of supersingular curves.

In [10], the authors explore these curves and their Jacelmaer fields of char-
acteristic 2. In this case, there is an intriguing connedtietween the curves in this
class and the weight enumerator of Reed—Miiller codes,hmvis their original
motivation for investigating this family of curves. In SetB of [10], they sketched
extensions of some of their results to odd characteristitfdw details are given.
The present paper extends the main results and strategf]db[the corresponding
class of curves in odd characteristic, providing full distand proofs.

The main difference between the two cases is that the aforéoned extraspe-
cial group of automorphisms has expongnin the case of odd characteristi;
whereas the exponent is 4 in characteristic 2. As a resultestf the argumentsin
the odd characteristic case are more involved than tho8gfifloreover, we have
streamlined the reasoning 6f [10] and combined it with idieas [18] to describe
the automorphism group of the curves under investigation.

Arguably the most important object associated to an algelotave is its zeta
function since it encodes a large amount of information aliwei curve, including
point counts. Our main result is Theorém 118.4 which comptite zeta function
of the members of the family of curves under consideratiar avsufficiently large
field. This not only generalizes the corresponding resut@j for characteristic 2,
but we also note that the authors|of[10] do not offer an odakatteristic analogue
in their paper.

The most prominent member of the family of curves considardtis paper is
the Hermite curvéd, (Exampld1.955), which is well known to be a maximal curve
over fields of square cardinality. We discuss other membktiseofamily that are
maximal in Sec{_119. More examples along the same lines &laeebeen found by
Cakcak andzbudak in[[3].

We now describe the contents of this paper in more detailpltet an odd prime
andR(X) € Fp[X] be an additive polynomial of degres®, i.e., for indeterminates
X andY we haveR(X +Y) = R(X) + R(Y). We denote b¥r the smooth projective
curve given by the Artin—Schreier equation

YP_Y = XR(X).

The key to the structure of the cur@s is the bilinear form TEXR(Y) + Y R X)),
introduced in Secf._1].2, whose keriglis characterized in Proposition 1.P.1, part
[2. We obtain an expression for the number of poinSgpbver a finite field in terms
of W. Over a sufficiently large fieldq of square cardinality, we conclude that the
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curveCg is either maximal or minimal, i.e., either the upper or lowtarsse—\Weil
bound is attained (Theordm 1.P.5 and part 2 of Rerhark]1.BoX)etermine which
of these cases applies, we use the automorphisi@gs. of

In Sects[[1.B and 1.4, we show th&talso determines a largesubgroupP of
the group of automorphisms (TheorEm 114.3). With few exoeptP is the Sylow
p-subgroup of AuiCr) (Theoreni1.414). It is an extraspecial group of exponent
and ordept1, where de¢R) = p" (Theoreni.15]3).

In general, the size of the automorphism group restrictptesibilities for the
number of rational points of a curve. In our situation, this@econcrete relationship,
since both the automorphisms and the rational pointSpofnay be described in
terms of the spad#y/. We establish a point-counting result that applies to thallest
field Fq over which all automorphisms ia are defined.

The determination of the zeta function©f overFq (Theoreni 1.8]4) relies on
a decomposition result for the Jacobi®iCr) of Cr (Propositio 1.613) that is an
application of a result of Kani—-Rosen [15]. More preciselg show thatl(Cr)
is isogenous oveFq to the product of Jacobians of quotients@ by suitable
subgroups ofP over Fq (Propositio_1.6]3). These quotient curves are twists of
the curveCr, with Ry(X) = X (Theoreni1.7]4) for which we may determine the
zeta function by explicit point counting. Putting everythitogether yields a precise
expression for the zeta function Gk.

Our results also yield explicit examples of maximal curv@sdat[1.D). The main
technical difficulty here is determining the fielty over which all automorphisms
in P are defined.

Acknowledgment&his research began at the Women in Numbers 3 workshop that
took place April 20-25, 2014, at the Banff International &sh Station (BIRS) in
Banff, Alberta (Canada). We thank the organizers of thisksbop as well as the
hospitality of BIRS. We also thank Mike Zieve for pointingt@mome references to
us.

IB is partially supported by DFG priority program SPP 148%1\¢ partially
supported by NSF grant DMS-1406066, and RS is supported BRTf Canada.

1.1.1 Notation

Let p denote an odd primef, be the finite field of ordep, andk = Fp be the
algebraic closure dfp. All curves under consideration are assumed to be smooth,
projective and absolutely irreducible. Consider the ci@realefined by the affine
equation

YP—Y =XR(X), (1.1)

where A
RX) = Y aXP € Fy[X]
2,27 <
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is a fixed additive polynomial of degrg® with h > 0 and whose coefficient field is
denotedF . Note thatR is additive, i.e.R(X+Y) = R(X) + R(Y) in F [X]. Thus,
Cris defined ovelyr and has genus

p"(p—1)
=

Of interest will be the polynomidt(X) derived fromR(X) via

9(Cr) =

E(X)= "y Z) @x)"" e Fpy[X] (1.2)

with zero locus
W = {cek:E(c)=0}. (1.3)

Note that the formal derivative d&(X) with respect toX is the constant non-zero
polynomialay,, SOE(X) is a separable additive polynomial of degp#e with coef-
ficients inF . It follows thatW is anF p-vector space of dimensiom2Whenh= 0,
i.e.,R(X) = agX, we havew = {0}.

We denote by, the splitting field ofE(X), soW C Fq. In Sect[ L.} of this paper
we will define and investigate a subgroBmf the group of automorphisms @k,
and the automorphisms containedinvill be defined over this field'.

For convenience, we summarize the most frequently usedioia Table T.1.

Table 1.1: Frequently used notation

[Symbol [Meaning and place of definition

p an odd prime

Fy field of definition ofR(X) and ofCr (Sect[1.111)

Fps an arbitrary extension dfy (Sect[1.R)

Fq Fq D Fy splitting field of E(X) (Sect[1.1.1)

k=TFp algebraic closure df, (Sect[1.1.1)

Cr the curveCr: YP —Y = XR(X) overFy (Eq.[1.1)

Ca quotient curvé:R/A (Theoreni 1.714)

R(X) RX) =M 0a.Xpl € Fpr[ ]an add|t|ve polynomial (Eq.1.1)

E(X) E(X) = (RXX)P" + 31 o(aX)P" € Fiy [X] (Eq[I2)

b,c elements irk with b? — b = cR(c) (RemarK1.313)

Bc(X) = B(X)[polynomial s.tB(X)P — B(X) = cR(X) + R(c)X
(Egqs[1.6 and1.11)

W(IFps) W(Fps) ={ceFps: Trrs/m, (CR(Y) +Y(R(c)) = O forally Fps}
(Eq[L5)

W W =W(Fq), space of zeros d&(X) (Eq.[1.3)

S(f) S(f ={(acd ) €K x kx Ty there isg € K[X] s.
f(aX-+c)—dT(X) = g(X)P—g(X } (EqLID)

Continued on next page
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Table 1.1 —Continued from previous page

Symbol Meaning and place of definition

Aut’(CR) group of automorphisms @ that fix « (Sect[1.4)

Oab.cd automorphism in AX(Cr) (Eq.[T.15)

Ob,c Obc = O1pc1 (Sect[Lb)

P Artin—Schreier automorphisn, = 01 101 (following Eq.[1.15)

P Sylow p-subgroup of AWY(Cr) (Theoreni 1.4]3)

H H = Aut®(Cr)/P (Theoreni 1.4]3)

Z(G) center of a grous

E(p%) extraspecial group of ordgr® and exponenp (Corollary[1.5.4)

o a maximal abelian subgroup Bf(Propositior 1.5]5)

JrR Jr = JadCR), the Jacobian variety @r

J~p the ab. varJ andJ’ are isogenous over the fieRl(Sect[1.5).

Ler(T) numerator of the zeta function of the cu@ever the fieldF
(Sect[1.B)

1.2 The kernel of the bilinear form associated taCr

LetFgs be any extension df . For eachs a multiple ofr, we associate to the curve

Cr thes-ary quadratic form

onlFps, where Tk g/, - Fps — Fp is the trace from the-dimensional vector space

X Try i, (XR(X))

Fps down toF,. The associated symmetric bilinear formBg x Fps is

with kernel
W(Fps) ={ceFps: Ters/]Fp(cR(y) +yR(c)) =0forally € Fps}.

Note thatW(Fps) is a vector space ovéfp. The following characterizations and

(6Y) = 3 Tre o/, (KREY) + YROO), (1.4)

properties ofV/ (Fps) will turn out to be useful.

Proposition 1.2.1.Let ce Fs. Then the following hold:

1. Ifce W(Fps), thenTr]Fps/Fp(cR(c)) =0.
2. We have & W(Fps) if and only if there exists a polynomialB) € Fps[X] with

B(X)P — B(X) = cR(X) + R(C)X. (1.6)

(1.5)



6 Bouw, Ho, Malmskog, Scheidler, Srinivasan, and Vincent

Moreover, there is a unique solutior &) € XFs[X] to the equation(1]6), and

a. The polynomial BX) is additive.
b. Every solution BX) of (1.8) is of the form BX) = B¢(X) + 3 for some3 € F,.
C. If c1,c e W(Fys), then B¢, (X) = Be, (X) 4 Be, (X).

3. We have & W(Fps) if and only if E(c) = 0, where EX) is the polynomial of
(L.2) with zero locus W as defined [n_(1.3). In other word$FW) =W NTF .

Proof.

1. Letc € W(Fps). Then substituting = c into (1.5) yields Tﬁps/]Fp(ZcR(c)) =0.
Since T!irps/ﬂrp(X) is Fp-linear andp is odd, this forces Erps/]Fp(cR(c)) =0.

2. The proof of parft2 is analogous to that of Proposition 3.[18]. Assume that
c e W(Fps). We show the existence of a solutiBrof (1.6), and show that state-
ment$ 2B=2c hold.

We first recursively define numbebsusing the following formulas:

bo = —cag— R(c), (1.7)
bi = —ca +bf , forl<i<h-—1, (1.8)

and setB:(X) = ZP;(}biXpi. Then B¢(X) € XFps[X], Bc(X) is additive, and
Be,+¢,(X) = Bg, (X) +Bg, (X) for all ¢1,c, € W(Fps). Furthermore, a simple cal-
culation reveals that

BP(X) — Bo(X) = cR(X) + R(C)X + eXP"

with € =bf | —can € Fs. Note that Tpps/]Fp(BC(y)p— Bc(y)) =0forally € Fys
by the additive version of Hilbert's Theorem 90.
If ¢ € W(Fps), then T[pps/]Fp(cR(y) +yR(c)) = 0 for all y € Fys, therefore

Tr]FpS/]Fp(eyph) = 0, which forcess = 0. HenceB(X) satisfies[(1J6), and
bP | = Can. (1.9)
Moreover, if B(X) is any solution to[(116), thefB(X) — B¢(X))P = B(X) —

Bc(X), soB(X) — B¢(X) € Fp.
Conversely, if[(1.B) has a solutid{X) € Fps[X], then

0= TerS/]Fp(B(y)p —B(y)) = Tr]FpS/Fp(CR(y) +R(c)y)

forally € Fps, soc € W(Fps).

3. Thisresult is stated fgy odd in Proposition 13.1 and proved fpe= 2 in Propo-
sition 3.1 of [10]. It is also addressed in Remark 4.15 of theppnt [17] (the
explicit statement is not included ih [18], but can readity deduced from the
results therein).

O
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Remark 1.2.2The characteristic-2 analogue of Proposition 1.2.1 phrag2 lse
found in Sect. 3 of[[10]. We also note that pait 1 of Proposiio2.1 does not
hold in characteristip = 2 in general (see Sect. 5 6f[10]).

Par{3 of Proposition 1.2.1 immediately establishes tHewiohg corollary.

Corollary 1.2.3. W(Fps) C W, with equality for any extensidfys of the splitting
field[Fq of E.

We conclude this section with a connection betweenRpelimension of the
spaceVs = Fs/W(Fgs) and the number df ps-rational points on the curv@r. This
is obtained by projecting the bilinear forin (L.4) oo We writeX = X+ W (F )
for the elements iVs. Propositiori 1.216 below is one of the key ingredients in the
determination of the zeta function 6k overFq (Theoreni 1.814).

Proposition 1.2.4.Define a map @on Vs x Vs via

1
Qs(XY) = 5 Tri s/, (XR(Y) +YR(X)).
Then Q is a non-degenerate bilinear form og ¥ Vs.
Proof. We begin by showing th&s is well-defined. Leky, o € Fys. Then

Ry =Xo <= X1 — X2 € W(Fps)
= T s/r, (X1 = X2)R(Y) + YR(X1 — X2)) = O for ally € Fps
= Trip s, (AR(Y) + YR(X1)) = Tri /i, (X2R(Y) + YR(X2)) for all'y € Fs
<= Qs(X1,Y) = Qs(X2,y) forally € Vs.

Similarly, one obtains thgt; =y, if and only if Qs(X,¥;) = Qs(X,¥5) for all X € Vs.
So if (%1,V1) = (X2,¥2), thenQs(X1,y1) = Qs(X1,¥2) = Qs(X2, Y2).

It is obvious thatQg is bilinear. To establish non-degeneracy,Xet Vs with
Qs(%,y) =0 for ally € Vs. Then Tprs/]Fp(xR(y) +YR(x)) = 0 for all y € Fs, so
x € W(Fps), and henc& = 0. O

It follows that the quadratic form— Qs(X,X) onVsis non-degenerate. Therefore,
its zero locus
{X€Vs:Tre o /m,(XR(X)) = 0}

defines a smooth quadric ovEg.

In [14], Joly provides a formula for the cardinality of theradocus of a non-
degenerate quadratic form, which we reproduce here for éimgenience of the
reader. The case ofodd is treated in Chap. 6, Sect. 3, Proposition 1, and the case
of n even is Proposition 2 of Chap. 6, Sect. 3. Note that in [14 résult is proved
for forms over an arbitrary finite field, but we restrictlig here which is sufficient
for our purpose.
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Theorem 1.2.5 (Joly [14]).Let ale—l— -+ aX? be a non-degenerate quadric in
n variables with coefficients ifip, and N be the cardinality of its zero locus. Then

pn-1 if nis odd
N=< p™1+(pV2—pV2Y) if nisevenand—1)"2ay - aq € (F})?,
Pl — (pV2—p¥2-Y) if nis even and—1)"2a; - an ¢ (F'5)2.

Applying this result to the quadrio— Trp os/Fp (XR(x)) on the spacg ps/W (Fs),
we obtain the following point count for the cur@a This resultis already presented
in [10], but we include it here to provide a proof.

Proposition 1.2.6 (Proposition 13.4 of[[10])Let ws = dimg,(W(Fps)) and ns =
S—Ws. Then the number d ps-rational points on G is

Ho(For) — pS+1 for ns odd
R\ p®) = ps+1:|:(p_1),/p5+Ws for ns even

with the sign depending on the coefficients of the quadratio Q.

Proof. We haveVs = F s /W(Fps) =~ IF';S, wherens = s— ws. Therefore, foix € Vs,
we may writeX= (X, . .., Xng), With eachx; € . In this way,Qs(X,X) on the space
Vs is a non-degenerate quadricrigvariables with coefficients iffp. Furthermore,
it is diagonalizable by [5, Chap. 8, Theorem 3.1] sincis odd, and therefore can
be written in the formzinilajxi2 with & € IFp for 1 <i < ns. As a consequence we
may apply Theorem 1.2.5 to obtain the cardinality of the set

{x€Vs~Fp:Qs(X,X) = 0} = {X € Vs Tt /5, (XR(X)) = O}

Eachx € Vs with Qs(X,X) = 0 gives rise top"s distinct values< € Fps such that
Tr]Fps/]Fp(xR(x)) = 0. For each of thesec F 55, we havep solutionsy to the equation
yP —y = xR(x). In addition to these point€r has one point at infinity which is
defined over any extension Bfy. Hence £gr(Fps) = p**IN + 1 with N given as
in Theoreni 1.2J5 (witm = n). ad

Note that a more general version of Proposifion 1.2.6 cambed in Theorem
4.1 of [4].

1.3 Connection to automorphisms oCr

In this section, we generalize the results of Propositi@afito lay the groundwork
for our investigation of th&-automorphisms dEr that stabilize», the unique point
at infinity on Cgr. We follow Sect. 3 of[[1B], but our notation is slightly diffent.
Similar results may also be found [0 [7].

We define for any polynomidi(X) € k[X] the set
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S(f(X)) ={(a,c,d) ek’ x kx Fy : there existg(X) € XKX] such that
f(aX+c) —df(X)=g(X)P—g(X)}. (1.10)

In our situation we takd (X) = XR(X), whereR(X) is an additive polynomial of
degreep. It is easy to verify that if(a,c,d) € S(XR(X)) then the magx,y) —
(ax+ c,dy+g(x)) is an automorphism dEr that fixese. In fact, in Lemmd1.4]1
we will see that every automorphism@g that fixesw is of this form. The elements
in S(XR(X)), along with the polynomiag(X), can be characterized explicitly as
follows.

Proposition 1.3.1.1f h = 0, then $XR(X)) = {(a,0,a%) : &% € F},}.
Proof. If h=0, thenR(X) = apX, so
(aX+c)R(@X+c) — dXRX) = ag ((a? — d)X*+ 2acX+¢?).

This polynomial is of the forng(X)P — g(X) if and only if g(X)P — g(X) =0, or
equivalentlya? = d, c = 0 andg(X) € Fy,. O

Proposition 1.3.2.

1. Assume that r 1 and let ac k*, c € k and de Fy,. Then(a,c,d) € S(XR(X)) if
and only if there exists () € XK[X] such that

cR(X) + R(C)X = B(X)P = B(X), (1.11)

and
aR(aX) = dR(X). (1.12)

2. If the equivalent conditions of pdr 1 are fulfilled, themrd B(X) satisfy the
following conditions.

a.ceWw.

b. The polynomial BX) = B¢(X) only depends on ¢ and is uniquely determined
by (.11) and the condition that.BX) € Xk[X]. It is an additive polynomial
with coefficients if'yr (¢) C Fg.

c. The polynomial BX) is identically zero if and only if e= 0, and has degree
p"~1 otherwise.

3. For a triple (a,¢,d) € S(XR(X)), all polynomials ¢X) as given in[(1.10) are of
the form
Bc(c)

2

asiranges oveF . In particular, each of these polynomial®g) has coefficients
inFq(a).

g(X) = Be(aX) + +i,

Proof.
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Let(a,c,d) € k" x kx ;. Suppose first that there exi®6X) € XK[X] satisfying
(@I.13), and tha andd satisfy [I.1P). Then for any< k such thabP —b = cR(c),
we have

(aX+c)R(aX+c) —dXRX) = X(aR(@X) — dR(X)) + cR(aX) +aXR(c) + cR(c)
= B(aX)P - B(aX) +bP—b,

and so we may takg(X) = B(aX) + bto show thafa,c,d) € S(XR(X)).
Conversely, suppose thé,c,d) € S(XR(X)). Then there exists a polynomial
9(X) € k[X] such that

X(aR(aX) — dR(X)) + cR(aX) +aR(c)X +cR(c) = g(X)P — g(X).

Writing g(X) = b+ B(X) with B(X) € Xk[X], we see that this is equivalent to the
existence of a polynomi@(X) € XK[X] such that

B(X)P —B(X) = XF(X)+G(X) (1.13)

whereF (X) = aR(aX) — dR(X) andG(X) = cR(aX) +aR(c)X are both additive
polynomials. We note for future reference during the prdqfart[3 that this also
impliesbP? —b = cR(c).

Note that[T.IR) holds if and only E(X) = 0, in which case3(X) = B(X /a) €
XKkX] satisfies[(I.111). Thus, it suffices to show ttetc,d) € S(XR(X)) implies
F(X) = 0 to complete the proof of pdrt 1.

To this end, we note that all the monomialdr (X) andG(X) are of the form
XP+1andXP' for 0 <i < h. If B(X) = 0, then this immediately forcés(X) =
G(X) = 0, so assume th&(X) 0.

Comparing degrees ii{1113) shows that(@g< p" L. Put

_ it
BX)= Y bxl, Bjekfor1<j<p'?
=1

and consider the ponnomi§(X)p — I§(X). In this polynomial, the coefficient of
Xlfori<j<phis

—b; whenpt j,
BJF’/p—Bj whenp|jandj < p™1,
thfl whenj = p".

All coefﬁcjentsgij for j#p,p +1 must vanish. We conclude that the co-
efficientsb; of B(X) are zero for allj # p',p' +1, so we may writeB(X) =
XU(X) 4+ V(X) whereU (X),V (X) € k[X] are additive polynomials. Then (1]13)
yields

XPU (X)P+V(X)P — XU (X) =V (X) = XF(X) + G(X).
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Except for the monomials iXPU (X)P, this polynomial identity only contains

monomials of the fornXP andXP+1; the monomials inXPU (X)P all take the
form XP+P™*. This forcedJ (X) =0. Thus XF(X) =V(X)P =V(X) —G(X) is
additive, which is only possible F (X) = 0.

2. The proof of parf2 is now straightforward. We remark thatiaion [1.111) is
identical to equatiori (116). Therefdred 2a follows from [Zof Proposition 1.2]1,
andB(X) is identical to the polynomiaB.(X) defined in that proposition since
B(X) € XKX]. Thus,B(X) only depends oo and is unique, and we wri:(X)
for this polynomial from now on. The additivity &:(X) was already established
in the proof of parfL, sincB:(X) = B(X/a), andB(X) =V (X) is additive; note
that it also follows from paiff 2a of Propositibn 1.2.1. Moveq the coefficients
of B satisfy [1.7)-(Z19) and thus belong gy (c). Part] and Corollary 1.2.3
imply thatFy (c) C Fq. This prove§ Zb.

If c=0, thenB;(X) = 0. If ¢ #£ 0, the polynomiaB¢(X) is obviously nonzero
and [1.9) shows thd&.(X) has degre@" 1. This prove§ Zc.

3. Writing g(X) = b+ B(X) with B(X) € XKX] as in the proof of parffll, we
have already seen thBt(X) = B(X/a), andb is any solution to the equation
bP — b = cR(c). Any two such solutions differ by addition of an element in
FFp. Furthermore, since 2 Iy, it follows from (1.11) thab = B¢(c)/2 satisfies
bP — b= cR(c), and the first statement of p&it 3 follows. The second stateofe
part3 follows from par2b.

O

Remark 1.3.3We repeat here a remark made in the proof since we will use this
throughout the paper. For a tripl@,c,d) € S(XR(X)), all polynomialsg(X) as
given in [1.10) can be written as

9(X) = Be(aX) +b,
whereBc(aX) € Fq(a), andb € kis a solution of the equation
bP —b=cR(c). (1.14)

Part[3 of Propositioh 1.3.2 implies that every solutloof this equation is of the
formb = B¢(c)/2+iwithi € Fp.

1.4 Automorphism group of Cr

In this section we apply the results of the previous sectmrsttidy the group
Aut(Cr) of k-automorphisms of the curi@g, and more particularly the subgroup
Aut%(Cr) of automorphisms o that fix the unique point at infinity, i.e., the unique
point of Cg which does not belong to the affine curve definedhy (1.1). Thiame-
sult is Theorerh 1.413, which describes X@g).
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Recall from Secf. 113 that to a triple, ¢, d) € S(XR(X)) we associate thieauto-
morphism
Oapcd: CrR— CR
(X,y) — (ax+c,dy+ b+ Bg(ax))
of Cr. Hereb is a solution of the equatiooP — b = cR(c) (see Remark1.3.3) and

Bc is as in Propositioh 1.3.2. Note thag, ¢4 fixes the poinko. In the rest of the
paper, we denote by

(1.15)

P(X,Y) = 01101(X%y) = (X,y+1)

the Artin—Schreier automorphism of the cu@g
The following lemma summarizes some properties of the aatphismso, ¢ g.

Lemma 1.4.1.With the above notation and assumptions, we have

1. Every element of the stabilizAutO(CR) of the pointew is of the forma,pc g as
in (TI3).

2. The automorphisms, p, ¢ 1 with (b,c) # (0,0) have order p. For(a,d) # (1,1)
the order ofo, ¢ 4 iS not a p-power.

Proof. The lemma follows from Corollaries 3.4 and 3.5[in][18]. Weakthe proof.

1. Parf1 follows from Proposition 3.3 0f [118] in the case &) > 2. (Sincepis
odd in our set-up and the genus@{ s p"(p— 1)/2, this only excludes the case
thath = 0 andp = 3. This case is treated in the proof of Corollary 3.4[0f [18].)
Namely, letp € Aut’(Cr) be an automorphism @k fixing . Then the proof
of Proposition 3.3 ofi[18] shows that there exists an isorhism ¢ : P* — P?
together with a commutative diagram

CR—¢>'CR

L,

Pl _¢> ]P)l,

where the vertical maps afg,y) — x.

The morphismj fixese € P, hence it is an affine linear transformation and we
may write it asd (x) = ax+ ¢ with a € k* andc € k. The commutative diagram
above implies thap (x,y) = (ax+c,dy+g(x)) for someg(X) € k(X) andd € k*.
The assumption that fixes the pointo implies thatg(X) € k[X] is a polynomial.
The statement thagt = g, ¢ 4 follows sinceg is assumed to be an automorphism
of Cr.

2. To prove paff2 we first remark thatdfp c ¢ hasp-power order, thea=d =1,
since 1 is the onlyth root of unity ink. We show that every nontrivial automor-
phismay p¢ 1 has ordemp.

We compute that
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O be1(6Y) = (X+ PC Y+ pb+Be(X) + Be(X+¢) + -+ Be(x+ (p— 1)c)).

Recall from Proposition 1.3.2 th8% is an additive polynomial; in particular, its
constant term vanishes. Hence

-1 —1
Be(X) +Be(X4C) 4+ +Be(X+ (p—1)c) = DZ) Be(ic) = ij iBe(c) =0.

This implies thato}, ., = 1.
O

Remark 1.4.2Parf{2 of Lemm&aZ.4]1 does not hold fore= 2. In [10], Theorem 4.1
it is shown that ALR(CR) always contains automorphisms of order 4 tior 1 and

p = 2. See alsd [18], Sect. 7.2 for a concrete example. In RemdB Wve give a
few more details on the differences between the cpse® andp odd.

The following result is Theorem 13.3 of [10], and descritiesgroup AR(Cr).
The structure of the Sylovp-subgroupP of Aut’(Cg) will be described in more
detail in Secf_1J5 below. Again, we include this result hterprovide a proof.

Theorem 1.4.3 (Theorem 13.3 of [10]).

1. The groupAut®(Cr) has a unique Sylow p-subgroup, which we denote by P. Itis
the subgroup consisting of all automorphisms, ¢ 1 and has cardinality gl
2. The automorphisms, g o ¢ form a cyclic subgroup H- Aut®(CR) of order

P gedpl +1).
2 >0
870

where e= 2 if all of the indices i such that;g# 0 have the same parity, and-el
otherwise.

3. The groupAut®(CR) is the semi-direct product of the normal subgroup P and the
subgroup H.

Proof.

1. To prove parfll, one easily checks that pc1: O1pc1 € Aut’(Cr)} is a sub-
group of Auf(CR). (This is similar to the proof of Lemma 1.5.2 below.) The
statements on the order of,cq in parti2 of Lemma_1.4]1 imply tha is the
unique Sylowp-subgroup of AU}(Cr), which implies thatP is a normal sub-
group.

Partd2h anfll3 of Propositibn 1.3.2 imply that the cardipalitP is equal to
|[W|p. The last statement of pdrt 1 therefore follows from part Pafposition
[L.2.1, sinceE is a separable polynomial of degrp#'.

2. To prove paffl2, we consider all eleme(as0,d) € S(XR(X)). Par{Zt of Propo-
sition[1.3:2 implies that the polynomi8y corresponding to this tuple is zero.
Par{2 of Proposition 1.3.2 therefore implies tta0,d) € S(XR(X)) if and only
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if aR(aX) = dR(X). This condition is equivalent td = aP 1 forall 0 <i < h
with & # 0, as can be readily seen by comparing coefficientaRfaX) and
dR(X). Par{2 now follows immediately.

3. Note that the order df is prime top. In particular, we havel NP = {1}. Par(33
follows since Au?(Cr) is generated by andP.

O

For completeness we state the following theorem, whiclofgdifrom [22], Satz
6 and Satz 7. (See also Theorem 3.1[of [18].) Since we studgute@morphism
group ofCr over the algebraically closed fieldhere, it is no restriction to assume
thatR(X) is monic.

Theorem 1.4.4.Let R be monic.

1. Assume that (X) ¢ {X,XP}. ThenAut(Cr) = Aut®(Cgr).
2. If R(X) = XP, thenAut(Cr) = PGUs(p)
3. IFR(X) = X, thenAut(Cr) ~ SLa(p).

For future reference we note the following result on the bigramification
groups of the pointe € Cgr in the coverCr — CR/AutO(CR). For the definition
of the higher ramification groups and their basic propestiesefer to [[21], Chap.
4 or [23], Chap. 3.

Lemma 1.4.5.Let R be an additive polynomial of degree-H, and G as given in

D).

1. The filtration of higher ramification groups in the lowermbering ofAut®(Cg)
is
G=Go=Aut’(Cr) 2P=G12Gy=--- =Gy, ;o = (p) 2 {1}.

2. Let HC Aut(CRr) be any subgroup which contaips Then ¢Cg/H) = 0.

Proof. To prove parfL, write/,, for the valuation at the unique poimt at infinity
and choose a uniformizing paramet@it co. One easily computes that

y <0(t>—t) 1+p" ifoe(p)\{1},
® t 1 if o€ P\ (p).

This may also be deduced from the fact that the quotier@zoby the subgroup
generated by the Artin—Schreier automorphsfr y) = (x,y+ 1) has genus 0[([19,
Lemma 2.4)).

Part[2 follows immediately from the fact that the functiondief the curve
Cr/{p) is k(X). This can also be deduced from dart 1. O
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1.5 Extraspecial groups and the structure o

We now focus again on the subgroBplescribed in pafl1 of Theordm 1.4.3. Rart 2
of Lemmd 1.4l implies that the SylowsubgrougP of Aut®(Cr) consists precisely
of the automorphismay p ¢ 1(X,y) = (X+C,y+ b+ Bc(x)). For brevity, we simplify
their notation to

Ob,c = O1b,c,1-

The main result of the section, Theorém 11.5.3, statesRhatan extraspecial
group. For more details on extraspecial groups we referehder to[[12, Chap.
111.13] and [25]. Recall that we assume thais an odd prime. The classification of
extraspecial 2-groups is different from that for odd primes

Definition 1.5.1. A noncommutativep-group G is extraspecialif its centerZ(G)
has ordeip and the quotien/Z(G) is elementary abelian.

We denote by (p®) the unique nonabelian group of cardinalifyand exponent
p. It can be given by generators and relations as follows:

E(p®) = (xy|XP=yP = [xy]P =1,[x.y] € Z(E(p?))).

This group obviously is an extraspecial group.
The following lemma describes the commutation relatioR.imThe lemma con-
tains the key steps to prove thHats an extraspecial group.

Lemma 1.5.2.Assume that b 1.
1. We havéoy, ¢, , Ob,.c,] = p~5(@:%), where
£(c1,C2) = B, (C2) — B, (€1).

2. We have 7P) = [P,P] = (p). The quotient group FZ(P) is isomorphic to the
space W defined in equatidn (11.3), where the isomorphismigid byoy, ¢ — C.

3. Any two non-commuting elemeuntso’ of P generate a normal subgroup g, :=
(o,a’) of P which is isomorphic to §?3).

Proof.

1. To prove parffll, we compute that
Tpa(X%,Y) = (X—C,y—b—Bc(x—c)).

We therefore have



16 Bouw, Ho, Malmskog, Scheidler, Srinivasan, and Vincent

Oby.01.03. 0, 3 T, 3, (06Y) = Oy 3 Ob.cy Oy, (X — €2 — b2 = By (X = €2)
= Op, ¢, Oby,c, (X—C2— C1,Y — b — Bg, (X — C2) — by — Bg, (X— 2 — €1))
= Oy ¢, (X— €1,y — Be, (X — C2) — b1 — Bg, (X— €2 — €1) + B, (Xx— C2 — €1))
= Oy (X—cCp,y—b1— Be, (X—c2—c1) — BCz(Cl))
= (x,y— BCl (X —C2— Cl) - BCz(Cl) + BCl(X_ Cl))
= (X,Y+Bc,(c1) — Be, (C2)).

Since oy, ¢, Ob,, Czagllclab’lc certainly belongs to AG{Cr), part[l of Lemma
[1.4.1 implies thaby, ¢, Op,, Cszllcl bz = Oapcd for somea, b, c andd. From
our computation above,=d =1, and?c = 0. Sincec = 0, by parf2t of Propo-
sition[1.3.2,B¢(X) = 0, which implies thab = B, (c1) — B¢, (C2) € Fp.

2. Part1 shows thgP,P] C (p). SinceP is noncommutative, we have equality.
Becausep = 019 andBy(X) = 0 by par{ 2t of Proposition 1.3.2, we have that
for any oy c,

ObcpTpep +=p>® =1,

sinceB¢(X) is an additive polynomial and therefore has no constant.t@tms
p commutes with every element Bf and[P, P] = (p) C Z(P).

To finish the proof of the first statement of part 2, we now shiat tf ¢; # 0,
then for each automorphisay, ¢, there exists an automorphism, ., such that
Ob, ¢, andoy, ¢, do not commute. This shows that in fggt) = Z(P).

Letc; e W) {0}. By partl2 of Proposition 1.2.1 and phit 1 of Proposifion4,.3.
(1,c1,1) € S(XR(X)) and by parf2c of Propositidn_1.3.B, (X) has degree
p"-1. Consideringe, =: C as a variable, the recursive formulas1.7) &ndl(1.8)
for the coefficientsd; of Bc show that deg(bi) < p™'. We conclude that the
degree of(cy,C), when considered as polynomial@ is at mostp?'~1. Since
the cardinality ofw is p?", it follows that there exists & € W, and therefore
Ob,,c, € P, such thag(cy, c2) # 0. We conclude that (P) = (p).

Sincep oy c = Op 1. it follows from par{3 of Proposition 1.3.2 that the map

P—W, OpcH C

is a surjective group homomorphism with kerge}.

3. Letd := 0Oy, ¢, 0" := Op,,c, € P be two noncommuting elements, and wigte-
g(cy,¢p). Partl implies thabo’ = p~¢0’0. Sinceo, o’ andp have ordemp
(parti2 of Lemm&1.411), it follows that ando’ generate a subgrolg(o, o’)
of orderp? of P, which containZ(P) = (p). Since the exponent of this subgroup
is p, it is isomorphic toE (p3).

For an arbitrary elementi,c € P, part[1 implies thatab’caok;éL € (p,0) C
E(o,0d’), and similarly foro’ replacingo. Thusg (o, o’) is a normal subgroup,
proving parf3.

O
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Theorem 1.5.3.Assume that > 1. Then the group P is an extraspecial group of
exponent p.

Proof. Sinceh > 1, part2 of Lemm&1.5l2 shows thRtis an extraspecial group.
Par2 of Lemma&1.4l1 yields thRthas exponenp. O

We now show thal is a central product df copies ofE(p®), i.e.,P is isomorphic
to the quotient of the direct product bfcopies ofE(p3), where the centers of each
copy have been identified. These subgroupR of orderp? have been described in
par3 of Lemm&1.5]2.

Corollary 1.5.4. Assume that > 1. Then P is a central product of h copies of
E(p%).

Proof. Theorem 111.13.7.(c) of [12] states thRtis the central product df extraspe-
cial groupsP, of orderp®. SinceP has exponenp, it follows that the group® have
exponenp as well. Therefor® ~ E(p?). a

We describe the decomposition Bfas a central product from Corollary 1.6.4
explicitly; this description is in fact the proof given inZ1Theorem 111.13.7.(c)].
The proof of pariP of Lemm&a1.8.2 shows tlet;,c,) defines a nondegenerate
symplectic pairing

W xW — Fp, (€1,C2) — £(C1,Cp).
We may choose a bade;, ..., cn, ¢}, . ..,¢,) of W such that
£(ci,cj) =aj,

whereg  is the Kronecker function. In particular, it follows th@t, ..., cn) CWis
a maximal isotropic subspace of the bilinear farm

For everyi, choose elements, ¢; € P which map tcc;, ¢/, respectively, under the
quotient map from pakfl2 of Lemma1.5.2. This correspondfitmsing an element
bi as in parfB of Propositidn 1.3.2 for eachPart1 of Lemm&1.512 implies that
o; does not commute with;/, but commutes withrj,ajf for every|j #i. Therefore
Ei = (ai,d/) is isomorphic taE (p®) (parf3 of LemmaZL5l2). It follows théis the
central product of the subgroups

We finish this section with a description of the maximal adrekubgroups d®.
This will be used in Seck.11.6 to obtain a decomposition oflth@obian oCr.

Proposition 1.5.5.Leth> 1.

1. Every maximal abelian subgroug of P is an elementary abelian group of order
p™1 andis normalin P.

2. Leto/ ~ (Z/pZ)™1 be a maximal abelian subgroup of P. For any subgroup
A=Ay~ (Z/pZ)" C o with A,nNZ(P) = {1} there exist subgroupsiA .., Ap 1
of &7 such that
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o =Z(P)UALU---UAp,
A~ (Z/pL)",  ANZ(P)={1},  ANA={1}ifi #].

3. Any two subgroups A af of order @' which trivially intersect the center of P
are conjugate inside P.

Proof.

1. The statement that the maximal abelian subgraupsf P have ordep™! is
Theorem 111.13.7.(e) of [12].

2. A maximal abelian subgroup’ is the inverse image of a maximal isotropic
subspace ofV. SinceP has exponenp, we conclude that? ~ (Z/pZ)"?! is
elementary abelian. Pdrt 1 of Lemma115.2 and the fact.4has the inverse
image of a maximal isotropic subspace®fimply that< is a normal subgroup
of P. This proves paiil1.

Let o7 C P be a maximal abelian subgroup. Without loss of generalig/may
assume that7 corresponds to the maximal isotropic subspace generatéteby
basis elements,,...,c, of W as described above. In this case we have=
(p,01,...,0n) Whereg; maps toc; under the map from pdd 2 of Lemrha1]5.2.
Define

Ap = <O'1, e O'h>.

This is a subgroup of/ of orderp” such that\, N Z(P) = {1}.
We definer = gy ¢ ... » Whereb is some solution of the equation

bP—b=(cy+ -+ Cp)R(Cy +- -+ f)
as specified in Remafk 1.8.3. Let
Ai:riApT*i, i=1...,p—1

By part{Za of Proposition 1.2. B.(X) is additive inc. This implies that

h
Bc/1+...+c§](x) = ;Bcf (X)

The choice of the basis, ¢ of W, together with paffll of Lemnia 1.5.2 implies
therefore that

10 Tfl — pfe(cfvci)o'i — pf(Ci}Cf)o-i =pPa0.

It follows thatAy NZ(P) = {1} andAiNA; = {1} if i # j. By counting, we see
that each non-identity element of is contained in exactly ong;.

3. LetA A be two subgroups of/ as in the statement of part 3. Without loss of
generality, we may assume that= A, = (01,... 0y), as in the proof of paftl2.
ThenA = (pliay...,plhay) for suitablej € Fp. Definec= 3 ; jici € W and
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choosé with bP —b = B¢(c) /2. As in the proof of paiffl2 it follows that:= oy
satisfiestAT 1 = A,

O

1.6 Decomposition of the Jacobian ofr

In this section we decompose the Jacobia@@bver the splitting fieldFq of the
polynomialE. This decomposition allows us to reduce the calculatiorhefzeta
function of Cr overFq to that of a certain quotient curve. This quotient curve is
computed in Secf. 1.7, and Sdct.]1.8 combines these resuttsmpute the zeta
function ofCr over[Fy,.

The decomposition result (Propositibn 1]6.3) we prove Wwekbbased on the
following general result of Kani—-Rosen (]|15, Theorem B]).

Theorem 1.6.1 (Kani-Rosen[15])Let C be a smooth projective curve defined over
an algebraically closed field k, and G a (finite) subgroughafy(C) such that G=
H1UH2U...UH:, where the subgroups K G satisfy HNH; = {1} fori # . Then

we have the isogeny relation

JadC)'"1 x JadC/G)? ~ JadC/H1)™ x --- x JadC/H)™,
where g= #G, h = #H;, andJad = Jacx - -- x Jac(n times).

We apply Theorerh 1.6.1 to a maximal abelian subgrat P. Recall from
part[1 of Propositiof 1,55 that is an elementary abeligo-group of ordempM*!
which contains the cent&(P) = (p) of P. Par{:3 of Propositioh 1.3.2 implies that
all automorphisms iw7 are defined oveFy.

Recall from part pafil2 of Propositibn 1.5.5 the existence décomposition

o =PAgUALU--- UA,, (1.16)

whereAg = (p) is the center oP and fori # 0 the A; are elementary abeliap
groups of ordep.

Each grouph defines a quotient cun@y, := Cr/Ai. Since all automorphismsiin
A; are defined ovefy, it follows that the quotient curv@y, together with the natural
mapTy, : Cr — Ca, may also be defined ové. The following lemma implies that
all curvesCy, are isomorphic ovel,.

Lemma 1.6.2.Let o7 be a maximal abelian subgroup of P, and let A aridh& two
subgroups ofe7 of order g' which have trivial intersection with the center of P.
Then the curvesg/A and G/A’ are isomorphic oveFy,.

Proof. Part(3 of Proposition 1.5.5 states that the subgrédupsdA’ are conjugate
insideP. Namely, we have\' = TAT—* for an explicit element € P. The automor-
phismt of Cg induces an isomorphism
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T: Cr/A— Cr/A.
Sincert is defined ovefFy, this isomorphism is defined ovEg as well. 0

We write Jr := Jad¢Cgr) for the Jacobian variety @g. SinceCr is defined over
Fq and has afifq-rational point, the Jacobian variely is also defined ovefq. The
map Ty, inducesFg-rational isogenies

T« Jr— JadCh), . - JadCp) — Jr. (1.17)

The element 1
Ea = En}f\ oM. € End(JR) := EndJr) ® Q

is an idempotent|([15, Sect. 2]) and satisfies the propesdtysd(Jr) is isogenous
to JacCp, ). Note thatp” is the degree of the mam,.

In the following result we use these idempotents to decompgsThe same
strategy was also used in |10, Sect. 10] in the casephaP. In that source, Van
der Geer and Van der Vlugt give a direct proof in their sitoiatof the result of
Kani—Rosen (Theorem 1.6.1) that we apply here.

Proposition 1.6.3.There exists affg-isogeny
— h
Jr ~Fq Jac(CAp)p .

Proof. We apply Theorerh 1.6.1 to the decomposition (IL.16) of a makabelian
subgroupe’ of P. This result shows the existence dt-gsogeny

p
IR % JadCr/ /)" ~y JadChy )P rlaac@ L (1.18)
=

The groupse andAg contain the Artin—Schreier elemept hence the curves
Cr/«/ andCa, have genus zero (pdrt 2 of Lemina 14.5). Therefore the Jacsbi
of these curves are trivial and may be omitted frém (1.18).

As before, leta, € EndJr) denote the idempotent correspondingtoTheorem
2 of [15] states that the isogeny relation frdm (1.18) is ealeint to the relation

pld ~ ph(ieAi) e End(Jr).

Here, as defined on p. 312 6f[15], the notatir b means thay (a) = x(b) for
all virtual characters of ERdJr). Since Enf(Jr) is aQ-algebra, we may divide by
p on both sides of this relation. Applying Theorem 2 [of|[15] enmore yields the
isogeny relation

p )
JR ~k r!Jac(CN)p“ g (1.19)
=



1 Zeta functions of a class of Artin—Schreier curves with ynamtomorphisms 21

We have already seen that the isogemigsand i, . are defined ovely. It follows

that the isogeny (1.19) is defined ov&y as well (see also Remark 6 in Sect. 3 of
[15]). Since the curve8,,, and hence also their Jacobians, are isomorphic (Lemma
[.6.2), the statement of the proposition follows. O

1.7 Quotients ofCr by elementary abelianp-groups

We consider again a maximal abelian subgredp~ (Z/pZ)™? of P and choose
A C o with A~ (Z/pz)" andANZ(P) = {1}. In this section we compute an
Fq-model of the quotient curv€s = Cr/A. LemmalL62 implies that thEq-
isomorphism class of the quotient curve does not dependeonhtbice of the sub-
groupA.

SinceANZ(P) = {1}, parfd of Lemm&1.4]5 implies that the filtration of higher
ramification groups in the lower numberingAfs

A=Gy=G6G1 202Gy = {1},
so the Riemann—Hurwitz formula yields
29(Cr) —2=p"(p—1) - 2= (29(Ca) —2)p" +2(p" - 1).

We conclude thag(Ca) = (p—1)/2.
Propositio 1.5]5 implies that the element&afommute withp, sincep € Z(P).
It follows thatCp is an Artin—Schreier cover of the projective line branchedre
point. Artin—Schreier theory implies therefore ti@¢ may be given by an Artin—
Schreier equation
YP—Y = fa(X),

where fa(X) is a polynomial of degree 2. Theorédm 1]7.4 below implies thist
polynomial fo(X) is in fact of the formfa(X) = aaX? for an explicit constanaa.
These curves are all isomorphic over the algebraicallyecidigldk, but not oveit'.
The following lemma describes the differéfig-models of the curvegP —Y = ex?
forec .

Lemma 1.7.1.For e € [Fy, define the curve Pby the affine equation
YP—Y =eX? (1.20)

Two curves [g and D, as in [1.20) are isomorphic ovédy if and only if @ /e; is
the product of a square ifig with an element of'p,. In particular, overlq, any two
of these curves are isomorphic.

Proof. Let De, andDe, be curves of the forni(1.20). Suppose there exist§an
isomorphismg : Dg, — De,. We claim that there exists dfy-isomorphism which
sendswo € De, t0 o € De,.
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We first consider the case that> 3, i.e.,g(Dg) > 2. In this case, Proposition
3.3 of [18] states that there exists an automorphisai De, overFg such that) o o
sends the poin € De, to the pointe € De,. To prove the claim it suffices to show
thato may be defined ovef.

To prove this, we follow the proof of Proposition 3.3 bf [18jdause the fact that
¢ maps every point dg, to a point ofDe, with the same polar semigroup. Theorem
3.1.(a) of [18] implies that the only points B, with the same polar semigroup as
o are the point) := (0,i) with i € Fp,. It follows thatg ~1(e) is eithere or Q; for
somei € . In the former case, there is nothing to showpfl () = Q;, we may

choose Vo1
_(x_v=-
O(Xay) - <y(p+1)/21 y ) .

Note that this is an automorphism B, which maps® to Q;. Moreover,o is
defined over the field of definition @, , and we are done.

We now prove the claim in the case that= 3. In this case the curvd3g are
elliptic curves. The inversg¢ ~1: De, — Dg, Of ¢ is also defined oveFy. It follows
thatQ := ¢ () € D¢, (Fq) is Fq-rational. Then the translationy «: P+~ P+
Q— = is defined oveFy and sends the unique pomte De, to Q. Precomposing
with To_. gives anfg-isomorphism which sends € Dg, t0 © € De,.

Therefore, without loss of generality we et De, — De, be anl'g-isomorphism
which sends the unique point B, ate to the unique point oDe, ate. Any such
automorphism can be written ggXx,y) = (VoX+ Vi, V2y + v3) with v; € Fq and
VaVg # 0. The condition tha$ mapsDe, to De, is equivalent to

vh = vy, V€1 = €2V, (1.21)
0=2eVgV1, vl — v =epvi. (1.22)
It follows thatvy = 0 andv,, v3 € Fp,. The coefficient; is given by

_ V&
2
This proves the first assertion of the lemma. The secondtassés clear since any
element off, is a square ifF,. O

We now compute a]ﬁcﬂmodel of the curv€r/Afor AC P an elementary abelian
subgroup of cardinality” with ANZ(P) = {1}. We prove this by induction oh,
following Sect. 13 of[[10]. The following proposition is tlkey step in the inductive
argument. Itis a corrected version of Proposition 13.5 6f,[ivhich extends to odd
p Proposition 9.1 of([10] and is presented without proof. kdiethe formula for
the coordinat®/ of the quotient curve given in Proposition 13.5/0f[[10] cansean
error that has been corrected here. We recallR(A1 is an additive polynomial of
degreep” with leading coefficiengy, € Fyr C F.

Proposition 1.7.2.Assume that B> 1, and let

0(X,Y) i= Opc(X,Y) = (X+C,y+ b+ B(x))
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be an automorphism ofglwith ¢ # 0 and b= B¢(c)/2. Then the quotient curve
Cr/(0) is isomorphic oveil'q to the smooth projective curve given by an affine
equation

VP_V = f(U)=URU), (1.23)
whereF?(U) € Fq[U] is an additive polynomial of degred'pt with leading coeffi-
cient

. {ﬂx ith#1
s ifh=1

Proof. In the proofc is fixed, therefore we writ®(X) for B(X). We define new
coordinates

X
U=XP—cP X, V:—Y+W(X)=—Y+VX2+EB(X), (1.24)
wherey is defined by
_ B9
2¢2

One easily checks that andV are invariant undeo. The invariance oY undero
is equivalent to the property

W(X+c)— W(X) =B(X)+b.

Here we use the definition dfasb = B(c)/2. SinceU andV generate a degree-
subfield of the function field o€ and the automorphism has ordemp, U andV
generate the function field of the quotient cuitg/ (o).

From the definition ofJ andV above, one can see that the Artin—Schreier auto-
morphismp induces an automorphisf(U,V) = (U,V — 1) on the quotient curve
Cr/(0). It follows that the quotient curve is also given by an ArBchreier equa-
tion, which we may write as

VPV = —YP LY+ WP(X) — W(X) = —XRX) + WP(X) - W(X). (1.25)

It is clear that the right-hand side ¢f(1]125) can be Writtemapolynomialf(u) in
U, since it is invariant undey by construction. Since the constant terniois zero,
the right-hand side has a zeroXat= 0, sof (U) € UFq[U].

Recall that paiffll of Propositién 1.B.2 established

B(X)P — B(X) = cR(X) + XR(c). (1.26)
This implies

X(B(X)P—B(X)) X?R(c)
c ¢

XR(X) =
It follows that

— XR(X) 4+ WP(X) —W(X) = B(Cip)pu + yPX2P 4 X? <@ - y> .27
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Using [1.26) one computes
p
yPX2P 4 X2 (—RE:C) - y) =yPU? - —'i(c) XU.

Define

Since® is invariant undeio, we may write@(X) = 8(U) as a polynomial irJ.
Note thatd(0) = 0 since®(0) = 0. The additivity of the polynomiaB andU in the
variableX imply that the polynomiab is additive in the variabl&l. It follows that
we may writed(U) = -3 U P'. From [1.9), we deduce that the leading coefficient
of B is o

- ah

Altogether, we find
VP—V =f(U)=U(B(U)+yU).

SettingR(U) := 6(U) + yPU, we see thaR(U) is an additive polynomial ity. The
statement about the leading coefficientR§f) ) follows from the definitions oP
andy. a

Remark 1.7.3We discuss a crucial difference between even and odd cleaistict:
Propositiod 1.7]2 is a statement about the automorphigmef orderp which are
not contained in the center Bf For p odd all elements d?\ Z(P) have ordep. This

is not true forp = 2, as we already noted in Remark1]4.2. Indeed all extraapeci
2-groups contain elements of order 4. The precise struofihe extraspecial group
P in the case thap = 2 can be found in Theorem 4.1 ¢f [10]. The automorphisms
Obc € P\ Z(P) of order 2 are easily recognized: they satisfyt 0 butB(c) = 0.
This observation considerably simplifies the computaticthé proof of Proposition
172

The distinction between elements of order 2 and 2 \Z(G) in characteristic

2 yields a decomposition of the polynomial(Theorem 3.4 of([10]). There is no
analogous result in odd characteristic.

Recall from Secf_I]5 that every maximal abelian subgretpf P is the inverse
image of a maximal isotropic subspagef W. For any such, let{c;,...,cy} be
a basis ofA as described prior to Propositibn 1J5.5. Then every sulodur of
order p" that intersect&Z (P) trivially is generated by automorphisms of the form
{Gb.crs-- > et wherebip —bi =ciR(ci) for 1 <i < h. In fact, there is a one-to-
one correspondence between such subgroupsaid sets of elemen{®;, ... by}
satisfyingbip —bi = ¢R(¢j). By Remar1.313 the elements in all these sets are of
the formb; = Bg (¢i)/2+i withi € Fp,.

Theorem 1.7.4.Assume 1> 0. Let .« be a maximal abelian subgroup of P. Any
subgroup AC <7 of order @' that intersects the center(R) of P trivially gives rise
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to an Fg-isomorphism of the quotient curé, onto the smooth projective curve
given by the affine equation

YP_Y =a,X?
Here
ay = [1 ¢
ceA\{0}

for h > 1, where we recall thatis the leading coefficient of R ardis the maximal
isotropic subspace of W that is the imagezfunder the quotient map P W. For
h=0, we let

ay = Qo.

Proof. We prove by induction ot that there exists a subgrodpcC <7 with A ~
(z/pZ)" andZ(P) N A = {1} such that the quotient cur@ = Cr/A is given over
Fq by the equation stated in the theorem. The statement of éoeegm follows from
this using LemmAa 1.6 2.

Forh = 0 the statement is true by definition.

Assume thath > 1 and that the statement of the theorem holds for all addi-
tive polynomialsR(X) of degreep" 1. Fix a basis{ci,cz,...,cn} for the image
of &7 in W. We may chooséy, = B, (ch)/2. As in Sect[ 15, we writ@h(x,y) =
Oby,.c,(X,Y) = (X4 Ch,Y + b+ Bg, (X)). Propositior 1.7]2 implies that the quotient
curveCy,_1 :=Cgr/(0n) is given by an Artin—Schreier equation

Y 1= Yh-1=Xn-1Rn-1(%-1),

whereR,_1 is an additive polynomial of degre# 1.

Since .« is an abelian group, it follows thatf, 1 := </ /(0n) ~ (Z/pZ)" is
a maximal abelian subgroup of the Sylqwsubgrouph,_; of Aut®(Ci,_1). The
definition of the coordinat&y_; asXP — cﬁ’lx in the proof of Propositioh 1.7.2
implies that.e4, ; corresponds to the maximal isotropic subspéte... T, 1)
of Wh_1 := W/(ch,c,), wheret = c? —c? ¢ andc, € W is an element with
£(ci,¢,) = & p as in Secl_1I5.

The induction hypothesis implies that there exists a suljgfg_; C o, 1 with
An_1 =~ (Z/pZ)"* andA,_1 N Z(P,_1) = {1} such that the quotiet@,_1/An_1 is
given by

Yop—Yo = a%flxg.
We may choosdy; satisfying bip —bi = c¢R(g) fori =1,...,h—1 such that the
images 0y, ¢, ,-..,0b, ;6 , IN %h-1generatédy,_ (Remark1.3.8). Puti = oy, g
fori=1,...,h—1.ThenA:= (0y,...,0) satisfies

Cr/A~F, Ch-1/An-1.

This concludes the induction proof.
The statement aboat,, follows immediately from the formula for the leading
coefficient of the quotient curve given in Proposition 11.7.2 O
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1.8 The zeta function of the curveCr

In this section, we describe the zeta function of the c@yever the splitting field
[Fq of the polynomiaE(X) defined in[(1.R).

LetC be a curve defined over a finite fielys, and writeN, = #C(IFpsn) for the
number of points o€ over any extensiofipsn Of Fs. Recall that thezeta function

of C, defined as
B N, T"
ZC(T) - eXp< z n ) ’

n>1

is a rational function with the following properties:

1. The zeta function may be written as

Ler,s(T)

=Ty

whereLc rs(T) € Z[T] is a polynomial of degree?C) with constant term 1.

2. WriteLeps(T) = |‘|i2§l(1— 0;T) with aj € C. After suitably ordering ther;, we

have
S

Oog-i = %’ laj| = p*/2.
I

3. For eachn, we have

as above, then for any> 0, we have

29

LC,]Fprs (T) = rl(l_ airT)'

The numeratolcr (T) of the zeta functionZc(T) over Fps is called thel-

polynomialof C/F . If the field is clear from the context, we sometimes omit it
from the notation and simply writec(T).
Recall that the Hasse—Weil bound asserts that

HC(Fps) — (p°+1)| < 2p¥?g(C).

A curveC/F s is calledmaximalif #C(Fps) = p°+ 1+ 2p%?g(C) andminimalif
#C(Fps) = p°+ 1 — 2p¥?g(C). Since the number of points on a curve must be an
integer, ifC is a maximal curve, theamust be even. Furthermore, using properties
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and3 above, it is clear thtis maximal ifaj = —p¥? for each 1< j < 2g(C),
andC is minimal if aj = p¥2 for each 1< j < 2g(C).

Assume thasis even and thdl ps is an extension df. In the notation of Propo-
sition[1.2.6, we havess = dimyp, W = 2h (Corollary[1.2.8). Since the cun@ has
genusp”(p— 1)/2, Proposition 1.2]6 implies th@k is either maximal or minimal
in this case. Moreover, one easily sees that if eifisrodd orF s does not contain
Fq, thenCr is neither maximal nor minimal. The following propositiossarts that
this almost determines the zeta functiorCgafoverFq. The statementis an extension
to odd characteristic of Theorems 10.1 and 10.2 of [10]. Nlwaethe statement for
odd characteristic is simpler than that for charactertic

Proposition 1.8.1.LetFps be an extension dfg, the splitting field of EX). Write
g=p"(p—1)/2for the genus of &

1. If sis even, the L-polynomial oGs

Leg(T) = (1 p¥/2T)?%.
2. If sis odd, the L-polynomial ofgds

Loa(T) = (1£p°T2)°.

Proof.

1. Letay,..., a4 be the reciprocal zeros of thepolynomial ofC overF s, where
we order then; such thatrjazg—j = p°.
We first assume thatis even. Sinc& s is an extension dfq, we have

29
Ny = #Cr(Fps) = 14 p°+2gp¥2 = 14 p°— Zai-
i=

Since|aj| = p¥2 we conclude that

01 == Oy = +p¥2,
This proves paitll.
2. We now assume thats odd. Propositioh 1.2.6 implies that
29
Ny =#Cr(Fps) =1+ pP=1+p°— Zai. (1.28)
i=

Since the reciprocal roots of thepolynomial ofC over[F s area?, we conclude
from par{l that eithear? = p°or a? = —p°for all j.

If a? = —pSforall j, thenaj = +ip¥?2, where i is a primitive 4th root of unity.
It follows thatayy; = p°/a; = —aj. Hence

(1—ajT)(1—azg |T)=1+p°T2
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Assume now thadsz = p*forall j. In this case we have; = +p¥2 andayg_j =
pS/aj = aj. Letm=#{1< j < g:aj = p¥?}. It follows from (T.28) that

0=#Cr(Fps) — (P°+ 1) = p%(—2m+2(g—m)).

We conclude that@= 4m, i.e., m= g/2 (in particular,g is even). For the -
polynomial ofCr overFgs we find

Lex(T) = (1—-pT?),

as claimed in pafi]2.

Remark 1.8.2.

1. The proof of paff2 of Propositign 1.8.1 shows that the tas€T ) = (1— p5T?2)9
can only occur wheg is even, i.e., ifp=1(mod4.

2. Assume thatis even. Them; = p¥2 oraj = —p¥2forall 1< j < 2g, and there-
foreCr is either minimal or maximal. I€z is minimal overF 5, eacha; = S/2,
The curveCg therefore remains minimal over each extension flégd If Cris

maximal overlFps, eachaj = —p¥2. The reciprocal roots of the-polynomial

overF s areorjf = (—1)"p°"/2. We conclude thaEr is maximal overF s if f
is odd and minimal iff is even.

To determine the zeta function @k, it remains to decide when the different
cases occur. The following result, which is an immediateltary of Proposition
[1.6.3, reduces this problem to the case 0.

Corollary 1.8.3. Let A~ (Z/pZ)" C P be a subgroup with AZ(P) = {0}. Write
Ca=Cgr/A. Then
h

LCR,]Fq (T) = LéA,]Fq (T)p
Proof. This is an immediate consequence of Proposliion 11.6.3esubelian vari-
eties which are isogenous ovigy have the same zeta function oWy This follows
for example from the cohomological description of the zetaction in Sect. 1 of
[18]. O

Recall from Theoreri 1.7.4 that the cui@g from Corollary(1.8.B is a curve of
genus(p—1)/2 given by an affine equation of the form

YP_Y =aX?

for somea € Fg. This corresponds to the cake= 0. All curves of this form are
isomorphic oveffy, and the differenfy-models are described in Lemma1l7.1. The
next result determines thepolynomials of the curveSa. In the literature one finds
many papers discussing the zeta function of similar curggsguGauss sums (for
examplel[6],[[16],127].) We give a self-contained treatrriegre based on the results
of Sect[1.p.
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Theorem 1.8.4.Consider the curve g over some extension @y and put g=
g(CRr). For h> 0 we put a= a,, with a., as given in Theorein 1.7.4 for some choice
of .

1. If p=1(mod4), then the L-polynomial of €overF s is given by

(1-p°T?)9  if sis odd
Lear,s(T) = § (1—p*2T)?  if sis even andhis a square ifffs,
(14 p¥2T)X  if sis even andis a nonsquare .

2. If p=3(mod4), then the L-polynomial of goverF s is given by

(1+pST?)9  if sis odd

(1-p¥2T)®  if s=0(mod4 andais a square i,
LCR,]FpS(T) =< (1+ p¥2T)8  ifs=0 (mod4) andais a nonsquare ifi’s,

(1+p¥?T)®  if s=2(mod4) andais a square iff'’s,

(1-p*2T)2  if s=2(mod4) andais a nonsquare iff’s.

Proof. Corollary[1.8.8 implies that it suffices to consider the dase0. To prove
the theorem we may therefore assume B(@&) = aX. We label the corresponding
curveD4 as we do in Lemm@a1.7.1.

Case 1:The elemena is a square irfs.

Then Lemm&1.7]1 implies th&, is isomorphic oveilfy to the curveD; given
by the affine equatiolP —Y = X2. SinceD; is defined oveifp, we compute its
L-polynomial ovetF,. The argument that we use here proceeds in the same manner
as in the proof of Propositidn 1.2.6. However, since bothpthlgnomialR(X) and
the field are very simple, we do not need to consider the qu&ddonsidered in
that proof explicitly.

As in the proof of Proposition 1.8.1, it suffices to determihe numbeM, of
FF 2-rational points of the curv®;. We havep+ 1 points withx € {0,}. As in the
proof of Proposition 1.216, thi >-points withx # 0, correspond to squares- X2
with Terz/Fp(z) = 0. Every such elememtyields exactly D rational points. Since
Terz/Fp(z) = z+ 7P, the nonzero elements of trace zero are exactly the elements

with zP~1 = —1. Choosing an elemegtec Fzz of order 2p— 1), we conclude that
the nonzero elements with trace zero are

ker(Trs z,) \ {0} = {22 j=0,...,p~2}.

First suppose thai= 3 ( mod 4). Then all the elements of k(e'l'rerz/]Fp) are squares
inF 2, so
#D1(F2) =1+ p+(p—1)2p=1+ P>+ (p—1)p.
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As in the proof of Propositio 1.8.1 it follows thag = +ipt/? = —ayq_j for 1 <
j < gafter suitable relabeling. Kis even thero} = a5, ; = isp%2 and

(1—p¥?T)? if s=0(mod4),

1-aST)(1—as, . T)=1—2ip%2T + p°T2=
(1-ajT)(1—azg T) p7T +p {(Hps/zT)z if s=2 (mod4).

If sis odd theror} = +isp%/2 = —a3,_j, and therefore
(1-aT)(1— a5, T)=1+p°T2

Now assume thgt = 1 (mod4). Then none of the elements of I@?ér]sz/Fp) are
squares ir¥ >, and we conclude that

#D1(F ) =1+ p=1+p°— (p—1)p.

Again as in the proof of Propositidn 1.8.1 it follows that, tgprelabeling,a; =

pS/2 = apq_j for 1< j < g/2,andaj = —p¥2 = apqj for g/2+1< j < g. (Note
thatg is even sincgp = 1 (mod4).) We may therefore relabel again to ensure that
aj = p¥? = —aygj, for 1< j < g. With this new labeling, i is even, thero§ =
as, ;= p¥? and

(1=afT)(1—af,q),T) = (1 p¥2T)?,
and ifsis odd thero§ = p*/2 = —azy_j and

(1— aJST)(l— ajs+g/2T) = (1_ pS/ZT)(1+ pS/ZT) — (1_ pSTZ).

This concludes Case 1.

Case 2:The elemena is a nonsquare ifff,s andsis odd.

Then the sefaB?: B € s} containg(p® — 1)/2 distinct elements, all of which
are nonsquares. As a consequence, this set contains afjusoes off ;5. Forsodd,
the nonsquares ifi, are also nonsquares Iffs, and therefore the séaB?: B ¢
IFBS} contains an element ifi,. (In fact, this set contains all the nonsquares jn)
LemmaL.7.]1 now implies that the curllg is isomorphic oveff to the curveDy,

and the desired result follows therefore from Case 1.

Case 3:The elemena s a nonsquare iffi,s andsis even.

Here, we consideM := ker(Tr]Fps/]Fp) ={zeFps: Tris/Fp(2) = 0}. Since the
trace is surjective anBlp-linear, the cardinality oM is ps~1. We may writeM as a
disjoint union

M = {0} UuM3IuM"sq
whereMsd (resp.M"59 are the elements dil \ {0} which are squares (resp. non-
squares) irf s.
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As in the proof of Case 1 we have
#D1(Fps) = 1+ p+ 2p#M®Y
and a similar argument gives
#Da(Fps) = 1+ p+ 2p#M™A

From the expression fo3 (Fps) computed in Case 1, it follows that

ps— 1

s p° 1L P UKs2/2 jf p=3(mod4) ands= 2 (mod4),
P lps2/2 if p=1(mod4) ors=0(mod4.

Since MMSY=#M — 1 —#MS9= p5~1 — 1 — #MS9 we conclude that

#Da(F ) = 1+p*—(p—1)p¥? if p=3(mod4 ands=2(mod4),
BT 14 p5+ (p—1)p¥2  if p=1(mod4) ors=0(mod4.

The expressions for tHe-polynomial now follow as in the previous cases. O

We finish this section by proving that all curv@g are supersingular. This result
is not new. Our proof just adds some details to Theorem 1310 An alternative
proof is given by Blache|(]2, Corollary 3.7 (ii)]).

Proposition 1.8.5.The curve R is supersingular, i.e., its Jacobian is isogenous over
k = Fq to a product of supersingular elliptic curves.

Proof. The curveCr is supersingular if and only if all the slopes of the Newton
polygon of theL-polynomial are 12. (This follows for example from [26, Theorem
2].) The statement of the proposition follows thereforenfrbheoreni 1.814. 0O

The reasoning of Van der Geer and Van der Vlugt for Theorer @B[10] is
slightly different, since they do not compute thgpolynomial ofCr overFq. They
argue that the Jacobian variely of Cr is isogenous ovek to p" copies of the
Jacobian of the curv®; with equationYP —Y = XZ2. (This is a weaker version of
Propositio 1.613.) They then use the fact that the cOrvis supersingular.

1.9 Examples

By work of Ihara[13], Stichtenoth and Xing [24], and Fuhrmamd Torred [8], we
know that forq a power of a prime, a curv@ which is maximal oveff . satisfies

9(C) € {07 (Q—lq U{Q(Q—D}

4 2
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Moreover, the Hermite curves are the only maximal curvegobg(q(q—1))/2
20].
[ I]?ecall from Sect_1]8 that a curéis maximal overF s if and only if its L-
polynomial satisfietic v ,, = (1+ p?T)2(C), In our setting, Theorefn 1.8.4 shows
that for a curveCg of the type considered in this paper amdefined as in Theorem
[1.8.4, ifF s contains the splitting fieldy of E(X), thenCg is maximal overtF ps if
and only if one of the following holds:

e sisevenais anonsquare ifig, andp=1(mod4),
e s=0(mod4), ais a nonsquare ifig, andp =3 (mod4), or
e s=2(mod4, ais asquareiff;, andp= 3 (mod4).

In each case the negation of the conditioraguarantees th&lr is a minimal curve
overF .

In light of these facts, the only difficulty in generating exales of maximal
and minimal curves lies in computing suitable elementa this section we present
certain cases in which suettan be computed. We start with a discussion of the case
h =0, and then turn our attention R(X) = XP". For more results along the same
lines we refer to[[B] and_[1]. In[4] it is shown that all curv€g that are maximal
over the fieldF 2 are quotients of the Hermite curtgy with affine equatiory?” —
y= xP"+1

At the end of this section we briefly investigate isomorplidmtween certain
curvesCg and curves with defining equations

YP 4y = xP™L

Throughout this section, we Iét, denote the Hermite curve which is defined by
the affine equation
YP4Y = XPL (1.29)

As mentioned above, this is a maximal curve affgr. The curveYP+Y = X?isa
quotient of the Hermite curvep, and therefore this curve is maximal oi&p. The
following lemma determines when the twists

YP—Y =aX?
of this curve are maximal. A similar result can also be foundémma 4.1 of{[B].

Lemma 1.9.1.Let RX) = aX € Fus[X]. Then G is maximal ovef s if and only
if one of the following conditions holds:

1. p=1(mod4 and ac IF”;ZS is a nonsquare,
2. p=3(mod4), sis even, and a FZZS is a nonsquare, or
3. p=3(mod4), sis odd, and & IF”;ZS is a square.

Proof. In this case we hav&(X) = 2aX, hencel s automatically contains the
splitting field of E. The lemma therefore follows from Theorém 118.4. O
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Remark 1.9.2The database manYPoints |([9]) compiles records of curvel wi
many points. The following two maximal curves fall in the genof genus and
cardinality covered in the database, and have now beendedlin manYPoints.
Previously, the database did not state any lower bound éomigximum number of
points of a curve of genus 5 ovEy ;4 and a curve of genus 9 ovEfg.

1. Inthe case wherle= 0, p= 11 ands= 4, leta € F],, be a nonsquare. Then the
curve
YH-Y =ax?

is maximal ovefF, ;4 and of genus 5.
2. Inthe case where= 0, p= 19 ands= 4, leta € F,« be a nonsquare. Then the
curve
Y-y =ax?

is maximal ovelf'; o and of genus 9.

The following proposition gives an example of a class of maaticurves with
small genus compared to the size of their field of definitiargantrast to the Her-
mite curves which have large genus. A similar result o= 2 can be found in
Theorem 7.4 of[[10]. A similar result witp replaced by an arbitrary prime power
can be found in Proposition 4.6 6f [3].

Proposition 1.9.3.Let h> 1.

1. LetRX) = XP". Then EX) = XP" 4+ X, which has splitting fielfq = F un. The
curve Gr is minimal overF.

2. Let g € F”‘ﬁh be an element withﬁgf1 = —1 and define RX) = ahxph. Then

E(X)= aﬁh(x P X), which has splitting fieldq = IF 2. The curve g is max-
imal overlFy.

Proof. We first prove the statement about the splitting fiel&E¢X) for both cases.
Consider the additive polynomi&(X) = anX?" € Fgs[X] with h > 1. Then [1.P)
shows that S

E(X)=af XP" +apX.

If ah = 1, thenE has splitting fieldFq = F . If an € F’EJZh satisfiesaﬁh’l =-1,
thenE(X) = aﬁh(xp2h — X), which has splitting field’q = F 2. In both cases, we
conclude from the explicit expressionBfthat
W= {ceFp: P = —aﬁ’phc}.
For everyc € W, the formulas[(117) and(1.8) imply that
h—1

Bc(X)=— Z) aﬁicphwxpi.
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We first consider the case whege= 1. Choose an elemeat W\ {0}, ie.,cP =
—c, and define _
A={cl:{eFyu} CW.

For any two(j, x in F o, we have

Pl P e
c Zk = - zo ZJ c Zk = BCZK(CZj)a

h-+i

h—-1
BCZJ (CZk) = ; ij

sinceZ”" = ¢ for any{ € F . Therefore the pairing from pdrt 1 of Lemrna 115.2
satisfies

£(cdj,cdk) = Bez; (€dk) — Beg, (¢¢j) =0 for any pair(cdj, clk) € A

We conclude thal ¢ W is a maximal isotropic subspace. Writg c P for the
corresponding maximal abelian subgrougrofRecall the constant from Theorem

[1.7.4, an
Ay = — |_| Y,
yeA\{0}
whenh > 1. Here the leading coefficieag of R(X) is 1. The definition oA implies
that
y=cl'-t 7 =—c”1
yeA\{0} CEF h

We conclude that,, = —cph*1/2 is a square irFg, since—1/2 is a square in
IF”‘JZ C . Theoreni 1.814 now yields

Lerg(T) = (1—/aT)%.

It follows thatCr is minimal overFy.
We now assume that, € F”;z,, satisfiesaﬁh = —ay. In this case the splitting field
of E(X) is Fq = F n as shown earlier. Choose a primitiyeg®" — 1)-st root of unity

Z. Then we may writey, = {@I+D(P"1/2 for somej. It follows thatay, € Fyis a

square if and only if p" +1)/2 is even. This is equivalent o= 3 (mod4) andh
odd.
We chooséA = F » C W = F n. For everyc,c’ € A, we have

h—-1

Be(c) == 3 (anc)” =Be(c)

As in the proof of paiffil, we conclude thats a maximal isotropic subspace for the
pairinge from par{d of Lemm&Z1.5]2. Since
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c=-1
ceA\{0}

)

we conclude thag,, is equivalent toa, modulo squares iffg. (The argument is
similar to that in the proof of pakil 1.) We conclude tlaat is a square i if and
only of p=3 (mod4 andh is odd. Theorerh 1.8.4 implies th@k is a maximal
curve ovetFq in each of these cases. This proves phrt 2. a

Remark 1.9.4ln their follow-up paper[11] ta [10], Van der Geer and Van déargt
constructed further examples of maximal curves as a fibetlymtof the curve€r.
We have not considered this construction in the case of oddacteristic. We leave
this as a subject for future research.

Example 1.9.5.
1. We consider the Hermite curt, given in [1.29), and the cun@k given by

YP_y =XxPL,

We claim that the curveld, andCr are not isomorphic ovef .. To see this, we
show that €r(F2) = 1+ p# 1+ pd = #Hp(F2). This clearly implies that the
two curves are not isomorphic ovE..
We note that

YiFrp —Fr, X — X2P

is the restriction of the norm dFipz/IFp, so the image oy is I, It follows that
Tr]sz/]Fp(x”p) =2*P£0 forallxe Fra.

We conclude that thE .-rational points oCr are thep points withx = 0 together
with the unique point. This proves the claim. (Exercise 6.7[in [23] asks to prove
thatH, andCr are isomorphic oveF . if p=1(mod4). The above calculation
shows that this does not hold.)

However, the Hermite curvd, is isomorphic oveF . to the curve given by

Cr 1 YP—Y = aXPHL

whereay € Fp sati51°iesa§”1 = —1. The isomorphism is given by: Cy —
Hp, (X,y) — (X, afy). This conforms with paftl2 of Proposition 1.D.3.
2. Leta, € IF”;Zh be an element witl'dz,[ﬂJh = —ay, as in parf2 of Proposition 1.9.3.

Write R(X) = anXP". Theny: (xy) — (X, aﬁ%ly) defines an isomorphism be-
tweenCg and the curve given by

YP4y = xP™L,

Par(2 of Proposition 1.9.3 therefore implies that this eisvmaximal oveF pn.
This can also be shown directly, for example using Propmsii4.1 of [23].
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