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Chapter 1
Zeta functions of a class of Artin–Schreier
curves with many automorphisms

Irene Bouw, Wei Ho, Beth Malmskog, Renate Scheidler, Padmavathi Srinivasan,
and Christelle Vincent

Abstract This paper describes a class of Artin–Schreier curves, generalizing results
of Van der Geer and Van der Vlugt to odd characteristic. The automorphism group
of these curves contains a large extraspecial group as a subgroup. Precise knowledge
of this subgroup makes it possible to compute the zeta function of the curves in this
class over the field of definition of all automorphisms in the subgroup.
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1.1 Introduction

In [10], Van der Geer and Van der Vlugt introduced a class of Artin–Schreier curves
over a finite field with a highly rich structure. For example, these curves have a very
large automorphism group that contains a large extraspecial p-group as a subgroup.
Results of Lehr–Matignon [18] show that the automorphism groups of these curves
are “maximal” in a precise sense. (Lehr–Matignon call this abig action.) A further
remarkable property is that all these curves are supersingular. This yields an easy
way of producing large families of supersingular curves.

In [10], the authors explore these curves and their Jacobians over fields of char-
acteristic 2. In this case, there is an intriguing connection between the curves in this
class and the weight enumerator of Reed–Müller codes, which was their original
motivation for investigating this family of curves. In Sect. 13 of [10], they sketched
extensions of some of their results to odd characteristic, but few details are given.
The present paper extends the main results and strategy of [10] to the corresponding
class of curves in odd characteristic, providing full details and proofs.

The main difference between the two cases is that the aforementioned extraspe-
cial group of automorphisms has exponentp in the case of odd characteristicp,
whereas the exponent is 4 in characteristic 2. As a result, some of the arguments in
the odd characteristic case are more involved than those of [10]. Moreover, we have
streamlined the reasoning of [10] and combined it with ideasfrom [18] to describe
the automorphism group of the curves under investigation.

Arguably the most important object associated to an algebraic curve is its zeta
function since it encodes a large amount of information about the curve, including
point counts. Our main result is Theorem 1.8.4 which computes the zeta function
of the members of the family of curves under consideration over a sufficiently large
field. This not only generalizes the corresponding result in[10] for characteristic 2,
but we also note that the authors of [10] do not offer an odd-characteristic analogue
in their paper.

The most prominent member of the family of curves consideredin this paper is
the Hermite curveHp (Example 1.9.5), which is well known to be a maximal curve
over fields of square cardinality. We discuss other members of the family that are
maximal in Sect. 1.9. More examples along the same lines havealso been found by
Çakçak and̈Ozbudak in [3].

We now describe the contents of this paper in more detail. Letp be an odd prime
andR(X) ∈ Fp[X] be an additive polynomial of degreeph, i.e., for indeterminates
X andY we haveR(X+Y) = R(X)+R(Y). We denote byCR the smooth projective
curve given by the Artin–Schreier equation

Yp−Y = XR(X).

The key to the structure of the curveCR is the bilinear form Tr(XR(Y)+YR(X)),
introduced in Sect. 1.2, whose kernelW is characterized in Proposition 1.2.1, part
2. We obtain an expression for the number of points ofCR over a finite field in terms
of W. Over a sufficiently large fieldFq of square cardinality, we conclude that the



1 Zeta functions of a class of Artin–Schreier curves with many automorphisms 3

curveCR is either maximal or minimal, i.e., either the upper or lowerHasse–Weil
bound is attained (Theorem 1.2.5 and part 2 of Remark 1.8.2).To determine which
of these cases applies, we use the automorphisms ofCR.

In Sects. 1.3 and 1.4, we show thatW also determines a largep-subgroupP of
the group of automorphisms (Theorem 1.4.3). With few exceptions,P is the Sylow
p-subgroup of Aut(CR) (Theorem 1.4.4). It is an extraspecial group of exponentp
and orderp2h+1, where deg(R) = ph (Theorem 1.5.3).

In general, the size of the automorphism group restricts thepossibilities for the
number of rational points of a curve. In our situation, thereis a concrete relationship,
since both the automorphisms and the rational points ofCR may be described in
terms of the spaceW. We establish a point-counting result that applies to the smallest
field Fq over which all automorphisms inP are defined.

The determination of the zeta function ofCR overFq (Theorem 1.8.4) relies on
a decomposition result for the JacobianJ(CR) of CR (Proposition 1.6.3) that is an
application of a result of Kani–Rosen [15]. More precisely,we show thatJ(CR)
is isogenous overFq to the product of Jacobians of quotients ofCR by suitable
subgroups ofP over Fq (Proposition 1.6.3). These quotient curves are twists of
the curveCR0 with R0(X) = X (Theorem 1.7.4) for which we may determine the
zeta function by explicit point counting. Putting everything together yields a precise
expression for the zeta function ofCR.

Our results also yield explicit examples of maximal curves (Sect. 1.9). The main
technical difficulty here is determining the fieldFq over which all automorphisms
in P are defined.

Acknowledgments.This research began at the Women in Numbers 3 workshop that
took place April 20–25, 2014, at the Banff International Research Station (BIRS) in
Banff, Alberta (Canada). We thank the organizers of this workshop as well as the
hospitality of BIRS. We also thank Mike Zieve for pointing out some references to
us.

IB is partially supported by DFG priority program SPP 1489. WH is partially
supported by NSF grant DMS-1406066, and RS is supported by NSERC of Canada.

1.1.1 Notation

Let p denote an odd prime,Fp be the finite field of orderp, andk = Fp be the
algebraic closure ofFp. All curves under consideration are assumed to be smooth,
projective and absolutely irreducible. Consider the curveCR defined by the affine
equation

Yp−Y = XR(X), (1.1)

where

R(X) =
h

∑
i=0

aiX
pi ∈ Fpr [X]
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is a fixed additive polynomial of degreeph with h≥ 0 and whose coefficient field is
denotedFpr . Note thatR is additive, i.e.,R(X+Y) = R(X)+R(Y) in Fpr [X]. Thus,
CR is defined overFpr and has genus

g(CR) =
ph(p−1)

2
.

Of interest will be the polynomialE(X) derived fromR(X) via

E(X) = (R(X))ph
+

h

∑
i=0

(aiX)ph−i ∈ Fpr [X] (1.2)

with zero locus
W = {c∈ k : E(c) = 0}. (1.3)

Note that the formal derivative ofE(X) with respect toX is the constant non-zero
polynomialah, soE(X) is a separable additive polynomial of degreep2h with coef-
ficients inFpr . It follows thatW is anFp-vector space of dimension 2h. Whenh= 0,
i.e.,R(X) = a0X, we haveW = {0}.

We denote byFq the splitting field ofE(X), soW ⊂ Fq. In Sect. 1.4 of this paper
we will define and investigate a subgroupP of the group of automorphisms ofCR,
and the automorphisms contained inP will be defined over this fieldFq.

For convenience, we summarize the most frequently used notation in Table 1.1.

Table 1.1: Frequently used notation

Symbol Meaning and place of definition

p an odd prime
Fpr field of definition ofR(X) and ofCR (Sect. 1.1.1)
Fps an arbitrary extension ofFpr (Sect. 1.2)
Fq Fq ⊇ Fpr splitting field ofE(X) (Sect. 1.1.1)
k= Fp algebraic closure ofFp (Sect. 1.1.1)
CR the curveCR : Yp−Y = XR(X) overFpr (Eq. 1.1)
CA quotient curveCR/A (Theorem 1.7.4)
R(X) R(X) = ∑h

i=0aiXpi ∈ Fpr [X] an additive polynomial (Eq. 1.1)

E(X) E(X) = (R(X))ph
+∑h

i=0(aiX)ph−i ∈ Fpr [X] (Eq. 1.2)
b,c elements ink with bp−b= cR(c) (Remark 1.3.3)
Bc(X) = B(X) polynomial s.t.B(X)p−B(X) = cR(X)+R(c)X

(Eqs. 1.6 and 1.11)
W(Fps) W(Fps) = {c∈ Fps : TrFps/Fp(cR(y)+ y(R(c)) = 0 for all y∈ Fps}

(Eq. 1.5)
W W =W(Fq), space of zeros ofE(X) (Eq. 1.3)
S( f ) S( f ) = {(a,c,d) ∈ k∗× k×F∗

p : there isg∈ k[X] s. t.
f (aX+c)−d f(X) = g(X)p−g(X)} (Eq. 1.10)

Continued on next page
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Table 1.1 –Continued from previous page
Symbol Meaning and place of definition
Aut0(CR) group of automorphisms ofCR that fix ∞ (Sect. 1.4)
σa,b,c,d automorphism in Aut0(CR) (Eq. 1.15)
σb,c σb,c = σ1,b,c,1 (Sect. 1.5)
ρ Artin–Schreier automorphism,ρ = σ1,1,0,1 (following Eq. 1.15)
P Sylow p-subgroup of Aut0(CR) (Theorem 1.4.3)
H H = Aut0(CR)/P (Theorem 1.4.3)
Z(G) center of a groupG
E(p3) extraspecial group of orderp3 and exponentp (Corollary 1.5.4)
A a maximal abelian subgroup ofP (Proposition 1.5.5)
JR JR = Jac(CR), the Jacobian variety ofCR

J ∼F J′ the ab. var.J andJ′ are isogenous over the fieldF (Sect. 1.6).
LC,F(T) numerator of the zeta function of the curveC over the fieldF

(Sect. 1.8)

1.2 The kernel of the bilinear form associated toCR

LetFps be any extension ofFpr . For eachsa multiple ofr, we associate to the curve
CR thes-ary quadratic form

x 7→ TrFps/Fp(xR(x))

onFps, where TrFps/Fp : Fps → Fp is the trace from thes-dimensional vector space
Fps down toFp. The associated symmetric bilinear form onFps×Fps is

(x,y) 7→ 1
2

TrFps/Fp(xR(y)+ yR(x)), (1.4)

with kernel

W(Fps) = {c∈ Fps : TrFps/Fp(cR(y)+ yR(c)) = 0 for all y∈ Fps}. (1.5)

Note thatW(Fps) is a vector space overFp. The following characterizations and
properties ofW(Fps) will turn out to be useful.

Proposition 1.2.1.Let c∈ Fps. Then the following hold:

1. If c∈W(Fps), thenTrFps/Fp(cR(c)) = 0.
2. We have c∈W(Fps) if and only if there exists a polynomial B(X) ∈ Fps[X] with

B(X)p−B(X) = cR(X)+R(c)X. (1.6)
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Moreover, there is a unique solution Bc(X) ∈ XFps[X] to the equation (1.6), and

a. The polynomial Bc(X) is additive.
b. Every solution B(X) of (1.6) is of the form B(X) =Bc(X)+β for someβ ∈Fp.
c. If c1,c2 ∈W(Fps), then Bc1+c2(X) = Bc1(X)+Bc2(X).

3. We have c∈ W(Fps) if and only if E(c) = 0, where E(X) is the polynomial of
(1.2) with zero locus W as defined in (1.3). In other words, W(Fps) =W∩Fps.

Proof.

1. Letc∈W(Fps). Then substitutingy= c into (1.5) yields TrFps/Fp(2cR(c)) = 0.
Since TrFps/Fp(X) is Fp-linear andp is odd, this forces TrFps/Fp(cR(c)) = 0.

2. The proof of part 2 is analogous to that of Proposition 3.2 of [10]. Assume that
c∈W(Fps). We show the existence of a solutionB of (1.6), and show that state-
ments 2a–2c hold.
We first recursively define numbersbi using the following formulas:

b0 =−ca0−R(c), (1.7)

bi =−cai +bp
i−1 for 1≤ i ≤ h−1, (1.8)

and setBc(X) = ∑h−1
i=0 biXpi

. Then Bc(X) ∈ XFps[X], Bc(X) is additive, and
Bc1+c2(X) = Bc1(X)+Bc2(X) for all c1,c2 ∈W(Fps). Furthermore, a simple cal-
culation reveals that

Bp
c(X)−Bc(X) = cR(X)+R(c)X+ εXph

with ε = bp
h−1−cah ∈ Fps. Note that TrFps/Fp(Bc(y)p−Bc(y)) = 0 for all y∈ Fps

by the additive version of Hilbert’s Theorem 90.
If c ∈ W(Fps), then TrFps/Fp(cR(y) + yR(c)) = 0 for all y ∈ Fps, therefore

TrFps/Fp(εyph
) = 0, which forcesε = 0. HenceBc(X) satisfies (1.6), and

bp
h−1 = cah. (1.9)

Moreover, if B(X) is any solution to (1.6), then(B(X)− Bc(X))p = B(X)−
Bc(X), soB(X)−Bc(X) ∈ Fp.
Conversely, if (1.6) has a solutionB(X) ∈ Fps[X], then

0= TrFps/Fp(B(y)
p−B(y)) = TrFps/Fp(cR(y)+R(c)y)

for all y∈ Fps, soc∈W(Fps).
3. This result is stated forp odd in Proposition 13.1 and proved forp= 2 in Propo-

sition 3.1 of [10]. It is also addressed in Remark 4.15 of the preprint [17] (the
explicit statement is not included in [18], but can readily be deduced from the
results therein).

⊓⊔
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Remark 1.2.2.The characteristic-2 analogue of Proposition 1.2.1 part 2 can be
found in Sect. 3 of [10]. We also note that part 1 of Proposition 1.2.1 does not
hold in characteristicp= 2 in general (see Sect. 5 of [10]).

Part 3 of Proposition 1.2.1 immediately establishes the following corollary.

Corollary 1.2.3. W(Fps) ⊆ W, with equality for any extensionFps of the splitting
fieldFq of E.

We conclude this section with a connection between theFp-dimension of the
spaceVs= Fps/W(Fps) and the number ofFps-rational points on the curveCR. This
is obtained by projecting the bilinear form (1.4) ontoVs. We writex = x+W(Fps)
for the elements inVs. Proposition 1.2.6 below is one of the key ingredients in the
determination of the zeta function ofCR overFq (Theorem 1.8.4).

Proposition 1.2.4.Define a map Qs on Vs×Vs via

Qs(x,y) =
1
2

TrFps/Fp(xR(y)+ yR(x)).

Then Qs is a non-degenerate bilinear form on Vs×Vs.

Proof. We begin by showing thatQs is well-defined. Letx1,x2 ∈ Fps. Then

x1 = x2 ⇐⇒ x1− x2 ∈W(Fps)

⇐⇒ TrFps/Fp((x1− x2)R(y)+ yR(x1− x2)) = 0 for all y∈ Fps

⇐⇒ TrFps/Fp(x1R(y)+ yR(x1)) = TrFps/Fp(x2R(y)+ yR(x2)) for all y∈ Fps

⇐⇒ Qs(x1,y) = Qs(x2,y) for all y∈Vs.

Similarly, one obtains thaty1 = y2 if and only if Qs(x,y1) = Qs(x,y2) for all x∈Vs.
So if (x1,y1) = (x2,y2), thenQs(x1,y1) = Qs(x1,y2) = Qs(x2,y2).

It is obvious thatQs is bilinear. To establish non-degeneracy, letx ∈ Vs with
Qs(x,y) = 0 for all y ∈ Vs. Then TrFps/Fp(xR(y) + yR(x)) = 0 for all y ∈ Fps, so

x∈W(Fps), and hencex= 0. ⊓⊔

It follows that the quadratic formx 7→Qs(x,x) onVs is non-degenerate.Therefore,
its zero locus

{x∈Vs : TrFps/Fp(xR(x)) = 0}

defines a smooth quadric overFp.
In [14], Joly provides a formula for the cardinality of the zero locus of a non-

degenerate quadratic form, which we reproduce here for the convenience of the
reader. The case ofn odd is treated in Chap. 6, Sect. 3, Proposition 1, and the case
of n even is Proposition 2 of Chap. 6, Sect. 3. Note that in [14], the result is proved
for forms over an arbitrary finite field, but we restrict toFp here which is sufficient
for our purpose.
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Theorem 1.2.5 (Joly [14]).Let a1X2
1 + · · ·+anX2

n be a non-degenerate quadric in
n variables with coefficients inFp, and N be the cardinality of its zero locus. Then

N =





pn−1 if n is odd,

pn−1+(pn/2− pn/2−1) if n is even and(−1)n/2a1 · · ·an ∈ (F∗
p)

2,

pn−1− (pn/2− pn/2−1) if n is even and(−1)n/2a1 · · ·an /∈ (F∗
p)

2.

Applying this result to the quadricx 7→TrFps/Fp(xR(x)) on the spaceFps/W(Fps),
we obtain the following point count for the curveCR. This result is already presented
in [10], but we include it here to provide a proof.

Proposition 1.2.6 (Proposition 13.4 of [10]).Let ws = dimFp(W(Fps)) and ns =
s−ws. Then the number ofFps-rational points on CR is

#CR(Fps) =

{
ps+1 for ns odd,

ps+1± (p−1)
√

ps+ws for ns even,

with the sign depending on the coefficients of the quadratic form Qs.

Proof. We haveVs = Fps/W(Fps) ≃ Fns
p , wherens = s−ws. Therefore, for ¯x∈ Vs,

we may write ¯x= (x1, . . . ,xns), with eachxi ∈ Fp. In this way,Qs(x,x) on the space
Vs is a non-degenerate quadric inns variables with coefficients inFp. Furthermore,
it is diagonalizable by [5, Chap. 8, Theorem 3.1] sincep is odd, and therefore can
be written in the form∑ns

i=1aiX2
i with ai ∈ Fp for 1≤ i ≤ ns. As a consequence we

may apply Theorem 1.2.5 to obtain the cardinality of the set

{x∈Vs ≃ Fns
p : Qs(x,x) = 0}= {x∈Vs : TrFps/Fp(xR(x)) = 0}.

Eachx∈ Vs with Qs(x,x) = 0 gives rise topws distinct valuesx∈ Fps such that
TrFps/Fp(xR(x)) = 0. For each of thesex∈Fps, we havep solutionsy to the equation
yp − y = xR(x). In addition to these points,CR has one point at infinity which is
defined over any extension ofFpr . Hence #CR(Fps) = pws+1N+1 with N given as
in Theorem 1.2.5 (withn= ns). ⊓⊔

Note that a more general version of Proposition 1.2.6 can be found in Theorem
4.1 of [4].

1.3 Connection to automorphisms ofCR

In this section, we generalize the results of Proposition 1.2.1 to lay the groundwork
for our investigation of thek-automorphisms ofCR that stabilize∞, the unique point
at infinity onCR. We follow Sect. 3 of [18], but our notation is slightly different.
Similar results may also be found in [7].

We define for any polynomialf (X) ∈ k[X] the set
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S( f (X)) = {(a,c,d) ∈ k∗× k×F∗
p : there existsg(X) ∈ Xk[X] such that

f (aX+ c)−d f(X) = g(X)p−g(X)}. (1.10)

In our situation we takef (X) = XR(X), whereR(X) is an additive polynomial of
degreeph. It is easy to verify that if(a,c,d) ∈ S(XR(X)) then the map(x,y) 7→
(ax+ c,dy+g(x)) is an automorphism ofCR that fixes∞. In fact, in Lemma 1.4.1
we will see that every automorphism ofCR that fixes∞ is of this form. The elements
in S(XR(X)), along with the polynomialg(X), can be characterized explicitly as
follows.

Proposition 1.3.1.If h = 0, then S(XR(X)) = {(a,0,a2) : a2 ∈ F∗
p}.

Proof. If h= 0, thenR(X) = a0X, so

(aX+ c)R(aX+ c)−dXR(X) = a0
(
(a2−d)X2+2acX+ c2) .

This polynomial is of the formg(X)p− g(X) if and only if g(X)p− g(X) = 0, or
equivalently,a2 = d, c= 0 andg(X) ∈ Fp. ⊓⊔

Proposition 1.3.2.

1. Assume that h≥ 1 and let a∈ k∗, c∈ k and d∈ F∗
p. Then(a,c,d) ∈ S(XR(X)) if

and only if there exists B(X) ∈ Xk[X] such that

cR(X)+R(c)X = B(X)p−B(X), (1.11)

and
aR(aX) = dR(X). (1.12)

2. If the equivalent conditions of part 1 are fulfilled, then cand B(X) satisfy the
following conditions.

a. c∈W.
b. The polynomial B(X) = Bc(X) only depends on c and is uniquely determined

by (1.11) and the condition that Bc(X) ∈ Xk[X]. It is an additive polynomial
with coefficients inFpr (c)⊆ Fq.

c. The polynomial Bc(X) is identically zero if and only if c= 0, and has degree
ph−1 otherwise.

3. For a triple (a,c,d) ∈ S(XR(X)), all polynomials g(X) as given in (1.10) are of
the form

g(X) = Bc(aX)+
Bc(c)

2
+ i,

as i ranges overFp. In particular, each of these polynomials g(X) has coefficients
in Fq(a).

Proof.
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1. Let(a,c,d)∈ k∗×k×F∗
p. Suppose first that there existsB(X)∈ Xk[X] satisfying

(1.11), and thata andd satisfy (1.12). Then for anyb∈ k such thatbp−b= cR(c),
we have

(aX+ c)R(aX+ c)−dXR(X) = X(aR(aX)−dR(X))+ cR(aX)+aXR(c)+cR(c)

= B(aX)p−B(aX)+bp−b,

and so we may takeg(X) = B(aX)+b to show that(a,c,d) ∈ S(XR(X)).
Conversely, suppose that(a,c,d) ∈ S(XR(X)). Then there exists a polynomial
g(X) ∈ k[X] such that

X(aR(aX)−dR(X))+ cR(aX)+aR(c)X+ cR(c) = g(X)p−g(X).

Writing g(X) = b+ B̃(X) with B̃(X)∈ Xk[X], we see that this is equivalent to the
existence of a polynomial̃B(X) ∈ Xk[X] such that

B̃(X)p− B̃(X) = XF(X)+G(X) (1.13)

whereF(X) = aR(aX)−dR(X) andG(X) = cR(aX)+aR(c)X are both additive
polynomials. We note for future reference during the proof of part 3 that this also
impliesbp−b= cR(c).
Note that (1.12) holds if and only ifF(X) = 0, in which caseB(X) = B̃(X/a) ∈
Xk[X] satisfies (1.11). Thus, it suffices to show that(a,c,d) ∈ S(XR(X)) implies
F(X) = 0 to complete the proof of part 1.
To this end, we note that all the monomials inXF(X) andG(X) are of the form
Xpi+1 andXpi

for 0≤ i ≤ h. If B̃(X) = 0, then this immediately forcesF(X) =
G(X) = 0, so assume that̃B(X) 6= 0.
Comparing degrees in (1.13) shows that deg(B̃)≤ ph−1. Put

B̃(X) =
ph−1

∑
j=1

b̃ jX
j , b̃ j ∈ k for 1≤ j ≤ ph−1,

and consider the polynomial̃B(X)p− B̃(X). In this polynomial, the coefficient of
X j for 1≤ j ≤ ph is






−b̃ j whenp ∤ j,

b̃p
j/p− b̃ j whenp | j and j ≤ ph−1,

b̃p
ph−1 when j = ph.

All coefficients ofX j for j 6= pi , pi + 1 must vanish. We conclude that the co-
efficientsb̃ j of B̃(X) are zero for allj 6= pi , pi + 1, so we may writẽB(X) =
XU(X)+V(X) whereU(X),V(X) ∈ k[X] are additive polynomials. Then (1.13)
yields

XpU(X)p+V(X)p−XU(X)−V(X) = XF(X)+G(X).
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Except for the monomials inXpU(X)p, this polynomial identity only contains
monomials of the formXpi

andXpi+1; the monomials inXpU(X)p all take the
form Xp+pi+1

. This forcesU(X) = 0. Thus,XF(X) =V(X)p−V(X)−G(X) is
additive, which is only possible ifF(X) = 0.

2. The proof of part 2 is now straightforward. We remark that equation (1.11) is
identical to equation (1.6). Therefore 2a follows from part2 of Proposition 1.2.1,
andB(X) is identical to the polynomialBc(X) defined in that proposition since
B(X) ∈ Xk[X]. Thus,B(X) only depends onc and is unique, and we writeBc(X)
for this polynomial from now on. The additivity ofBc(X) was already established
in the proof of part 1, sinceBc(X) = B̃(X/a), andB̃(X) =V(X) is additive; note
that it also follows from part 2a of Proposition 1.2.1. Moreover, the coefficients
of Bc satisfy (1.7)–(1.9) and thus belong toFpr (c). Part 1 and Corollary 1.2.3
imply thatFpr (c)⊆ Fq. This proves 2b.
If c = 0, thenBc(X) = 0. If c 6= 0, the polynomialBc(X) is obviously nonzero
and (1.9) shows thatBc(X) has degreeph−1. This proves 2c.

3. Writing g(X) = b+ B̃(X) with B̃(X) ∈ Xk[X] as in the proof of part 1, we
have already seen thatBc(X) = B̃(X/a), andb is any solution to the equation
bp − b = cR(c). Any two such solutions differ by addition of an element in
Fp. Furthermore, since 2∈ F∗

p, it follows from (1.11) thatb= Bc(c)/2 satisfies
bp−b= cR(c), and the first statement of part 3 follows. The second statement of
part 3 follows from part 2b.

⊓⊔

Remark 1.3.3.We repeat here a remark made in the proof since we will use this
throughout the paper. For a triple(a,c,d) ∈ S(XR(X)), all polynomialsg(X) as
given in (1.10) can be written as

g(X) = Bc(aX)+b,

whereBc(aX) ∈ Fq(a), andb∈ k is a solution of the equation

bp−b= cR(c). (1.14)

Part 3 of Proposition 1.3.2 implies that every solutionb of this equation is of the
form b= Bc(c)/2+ i with i ∈ Fp.

1.4 Automorphism group ofCR

In this section we apply the results of the previous section to study the group
Aut(CR) of k-automorphisms of the curveCR, and more particularly the subgroup
Aut0(CR) of automorphisms ofCR that fix the unique point at infinity, i.e., the unique
point ofCR which does not belong to the affine curve defined by (1.1). The main re-
sult is Theorem 1.4.3, which describes Aut0(CR).
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Recall from Sect. 1.3 that to a triple(a,c,d)∈S(XR(X))we associate thek-auto-
morphism

σa,b,c,d : CR →CR

(x,y) 7→ (ax+ c,dy+b+Bc(ax))
(1.15)

of CR. Hereb is a solution of the equationbp−b= cR(c) (see Remark 1.3.3) and
Bc is as in Proposition 1.3.2. Note thatσa,b,c,d fixes the point∞. In the rest of the
paper, we denote by

ρ(x,y) = σ1,1,0,1(x,y) = (x,y+1)

the Artin–Schreier automorphism of the curveCR.
The following lemma summarizes some properties of the automorphismsσa,b,c,d.

Lemma 1.4.1.With the above notation and assumptions, we have

1. Every element of the stabilizerAut0(CR) of the point∞ is of the formσa,b,c,d as
in (1.15).

2. The automorphismsσ1,b,c,1 with (b,c) 6= (0,0) have order p. For(a,d) 6= (1,1)
the order ofσa,b,c,d is not a p-power.

Proof. The lemma follows from Corollaries 3.4 and 3.5 in [18]. We recall the proof.

1. Part 1 follows from Proposition 3.3 of [18] in the case thatg(CR)≥ 2. (Sincep is
odd in our set-up and the genus ofCR is ph(p−1)/2, this only excludes the case
thath= 0 andp= 3. This case is treated in the proof of Corollary 3.4 of [18].)
Namely, letϕ ∈ Aut0(CR) be an automorphism ofCR fixing ∞. Then the proof
of Proposition 3.3 of [18] shows that there exists an isomorphism ϕ̃ : P1 → P1

together with a commutative diagram

CR
ϕ

//

��

CR

��

P1 ϕ̃
// P1,

where the vertical maps are(x,y) 7→ x.
The morphismϕ̃ fixes∞ ∈ P1, hence it is an affine linear transformation and we
may write it asϕ̃(x) = ax+ c with a∈ k∗ andc ∈ k. The commutative diagram
above implies thatϕ(x,y) = (ax+c,dy+g(x)) for someg(X)∈ k(X) andd∈ k∗.
The assumption thatϕ fixes the point∞ implies thatg(X)∈ k[X] is a polynomial.
The statement thatϕ =σa,b,c,d follows sinceϕ is assumed to be an automorphism
of CR.

2. To prove part 2 we first remark that ifσa,b,c,d hasp-power order, thena= d = 1,
since 1 is the onlypth root of unity ink. We show that every nontrivial automor-
phismσ1,b,c,1 has orderp.
We compute that
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σ p
1,b,c,1(x,y) = (x+ pc,y+ pb+Bc(x)+Bc(x+ c)+ · · ·+Bc(x+(p−1)c)).

Recall from Proposition 1.3.2 thatBc is an additive polynomial; in particular, its
constant term vanishes. Hence

Bc(X)+Bc(X+ c)+ · · ·+Bc(X+(p−1)c) =
p−1

∑
i=0

Bc(ic) =
p−1

∑
i=0

iBc(c) = 0.

This implies thatσ p
1,b,c,1 = 1.

⊓⊔

Remark 1.4.2.Part 2 of Lemma 1.4.1 does not hold forp= 2. In [10], Theorem 4.1
it is shown that Aut0(CR) always contains automorphisms of order 4 forh≥ 1 and
p = 2. See also [18], Sect. 7.2 for a concrete example. In Remark 1.7.3 we give a
few more details on the differences between the casesp= 2 andp odd.

The following result is Theorem 13.3 of [10], and describes the group Aut0(CR).
The structure of the Sylowp-subgroupP of Aut0(CR) will be described in more
detail in Sect. 1.5 below. Again, we include this result hereto provide a proof.

Theorem 1.4.3 (Theorem 13.3 of [10]).

1. The groupAut0(CR) has a unique Sylow p-subgroup, which we denote by P. It is
the subgroup consisting of all automorphismsσ1,b,c,1 and has cardinality p2h+1.

2. The automorphismsσa,0,0,d form a cyclic subgroup H⊂ Aut0(CR) of order

e(p−1)
2

gcd
i≥0
ai 6=0

(pi +1),

where e= 2 if all of the indices i such that ai 6= 0 have the same parity, and e= 1
otherwise.

3. The groupAut0(CR) is the semi-direct product of the normal subgroup P and the
subgroup H.

Proof.

1. To prove part 1, one easily checks that{σ1,b,c,1 : σ1,b,c,1 ∈ Aut0(CR)} is a sub-
group of Aut0(CR). (This is similar to the proof of Lemma 1.5.2 below.) The
statements on the order ofσa,b,c,d in part 2 of Lemma 1.4.1 imply thatP is the
unique Sylowp-subgroup of Aut0(CR), which implies thatP is a normal sub-
group.
Parts 2a and 3 of Proposition 1.3.2 imply that the cardinality of P is equal to
|W|p. The last statement of part 1 therefore follows from part 3 ofProposition
1.2.1, sinceE is a separable polynomial of degreep2h.

2. To prove part 2, we consider all elements(a,0,d) ∈ S(XR(X)). Part 2c of Propo-
sition 1.3.2 implies that the polynomialB0 corresponding to this tuple is zero.
Part 2 of Proposition 1.3.2 therefore implies that(a,0,d)∈S(XR(X)) if and only



14 Bouw, Ho, Malmskog, Scheidler, Srinivasan, and Vincent

if aR(aX) = dR(X). This condition is equivalent tod = api+1 for all 0 ≤ i ≤ h
with ai 6= 0, as can be readily seen by comparing coefficients inaR(aX) and
dR(X). Part 2 now follows immediately.

3. Note that the order ofH is prime top. In particular, we haveH ∩P= {1}. Part 3
follows since Aut0(CR) is generated byH andP.

⊓⊔

For completeness we state the following theorem, which follows from [22], Satz
6 and Satz 7. (See also Theorem 3.1 of [18].) Since we study theautomorphism
group ofCR over the algebraically closed fieldk here, it is no restriction to assume
thatR(X) is monic.

Theorem 1.4.4.Let R be monic.

1. Assume that R(X) /∈ {X,Xp}. ThenAut(CR) = Aut0(CR).
2. If R(X) = Xp, thenAut(CR) = PGU3(p)
3. If R(X) = X, thenAut(CR)≃ SL2(p).

For future reference we note the following result on the higher ramification
groups of the point∞ ∈ CR in the coverCR → CR/Aut0(CR). For the definition
of the higher ramification groups and their basic propertieswe refer to [21], Chap.
4 or [23], Chap. 3.

Lemma 1.4.5.Let R be an additive polynomial of degree h≥ 1, and CR as given in
(1.1).

1. The filtration of higher ramification groups in the lower numbering ofAut0(CR)
is

G= G0 = Aut0(CR)) P= G1 ) G2 = · · ·= G1+ph = 〈ρ〉) {1}.
2. Let H⊂ Aut(CR) be any subgroup which containsρ . Then g(CR/H) = 0.

Proof. To prove part 1, writeν∞ for the valuation at the unique point∞ at infinity
and choose a uniformizing parametert at ∞. One easily computes that

ν∞

(
σ(t)− t

t

)
=

{
1+ ph if σ ∈ 〈ρ〉 \ {1},
1 if σ ∈ P\ 〈ρ〉.

This may also be deduced from the fact that the quotient ofCR by the subgroup
generated by the Artin–Schreier automorphismρ(x,y) = (x,y+1) has genus 0 ([19,
Lemma 2.4]).

Part 2 follows immediately from the fact that the function field of the curve
CR/〈ρ〉 is k(X). This can also be deduced from part 1. ⊓⊔
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1.5 Extraspecial groups and the structure ofP

We now focus again on the subgroupP described in part 1 of Theorem 1.4.3. Part 2
of Lemma 1.4.1 implies that the Sylowp-subgroupP of Aut0(CR) consists precisely
of the automorphismsσ1,b,c,1(x,y) = (x+c,y+b+Bc(x)). For brevity, we simplify
their notation to

σb,c = σ1,b,c,1.

The main result of the section, Theorem 1.5.3, states thatP is an extraspecial
group. For more details on extraspecial groups we refer the reader to [12, Chap.
III.13] and [25]. Recall that we assume thatp is an odd prime. The classification of
extraspecial 2-groups is different from that for odd primes.

Definition 1.5.1.A noncommutativep-groupG is extraspecialif its centerZ(G)
has orderp and the quotientG/Z(G) is elementary abelian.

We denote byE(p3) the unique nonabelian group of cardinalityp3 and exponent
p. It can be given by generators and relations as follows:

E(p3) = 〈x,y | xp = yp = [x,y]p = 1, [x,y] ∈ Z(E(p3))〉.

This group obviously is an extraspecial group.
The following lemma describes the commutation relation inP. The lemma con-

tains the key steps to prove thatP is an extraspecial group.

Lemma 1.5.2.Assume that h≥ 1.

1. We have[σb1,c1,σb2,c2] = ρ−ε(c1,c2), where

ε(c1,c2) = Bc1(c2)−Bc2(c1).

2. We have Z(P) = [P,P] = 〈ρ〉. The quotient group P/Z(P) is isomorphic to the
spaceW defined in equation (1.3), where the isomorphism is induced byσb,c 7→ c.

3. Any two non-commuting elementsσ ,σ ′ of P generate a normal subgroup Eσ ,σ ′ :=
〈σ ,σ ′〉 of P which is isomorphic to E(p3).

Proof.

1. To prove part 1, we compute that

σ−1
b,c (x,y) = (x− c,y−b−Bc(x− c)).

We therefore have
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σb1,c1σb2,c2σ−1
b1,c1

σ−1
b2,c2

(x,y) = σb1,c1σb2,c2σ−1
b1,c1

(x− c2,y−b2−Bc2(x− c2))

= σb1,c1σb2,c2(x− c2− c1,y−b2−Bc2(x− c2)−b1−Bc1(x− c2− c1))

= σb1,c1(x− c1,y−Bc2(x− c2)−b1−Bc1(x− c2− c1)+Bc2(x− c2− c1))

= σb1,c1(x− c1,y−b1−Bc1(x− c2− c1)−Bc2(c1))

= (x,y−Bc1(x− c2− c1)−Bc2(c1)+Bc1(x− c1))

= (x,y+Bc2(c1)−Bc1(c2)).

Sinceσb1,c1σb2,c2σ−1
b1,c1

σ−1
b2,c2

certainly belongs to Aut0(CR), part 1 of Lemma

1.4.1 implies thatσb1,c1σb2,c2σ−1
b1,c1

σ−1
b2,c2

= σa,b,c,d for somea, b, c andd. From
our computation above,a= d = 1, andc= 0. Sincec= 0, by part 2c of Propo-
sition 1.3.2,Bc(X) = 0, which implies thatb= Bc2(c1)−Bc1(c2) ∈ Fp.

2. Part 1 shows that[P,P] ⊂ 〈ρ〉. SinceP is noncommutative, we have equality.
Becauseρ = σ1,0 andB0(X) = 0 by part 2c of Proposition 1.3.2, we have that
for anyσb,c,

σb,cρσ−1
b,c ρ−1 = ρBc(0) = 1,

sinceBc(X) is an additive polynomial and therefore has no constant term. Thus
ρ commutes with every element ofP, and[P,P] = 〈ρ〉 ⊆ Z(P).
To finish the proof of the first statement of part 2, we now show that if c1 6= 0,
then for each automorphismσb1,c1 there exists an automorphismσb2,c2 such that
σb1,c1 andσb2,c2 do not commute. This shows that in fact〈ρ〉= Z(P).
Let c1 ∈W \ {0}. By part 2 of Proposition 1.2.1 and part 1 of Proposition 1.3.2,
(1,c1,1) ∈ S(XR(X)) and by part 2c of Proposition 1.3.2,Bc1(X) has degree
ph−1. Consideringc2 =: C as a variable, the recursive formulas (1.7) and (1.8)
for the coefficientsbi of BC show that degC(bi) ≤ ph+i. We conclude that the
degree ofε(c1,C), when considered as polynomial inC, is at mostp2h−1. Since
the cardinality ofW is p2h, it follows that there exists ac2 ∈ W, and therefore
σb2,c2 ∈ P, such thatε(c1,c2) 6= 0. We conclude thatZ(P) = 〈ρ〉.
Sinceρσb,c = σb+1,c, it follows from part 3 of Proposition 1.3.2 that the map

P→W, σb,c 7→ c

is a surjective group homomorphism with kernel〈ρ〉.
3. Letσ := σb1,c1,σ

′ := σb2,c2 ∈ P be two noncommuting elements, and writeε =
ε(c1,c2). Part 1 implies thatσσ ′ = ρ−εσ ′σ . Sinceσ ,σ ′ andρ have orderp
(part 2 of Lemma 1.4.1), it follows thatσ andσ ′ generate a subgroupE(σ ,σ ′)
of orderp3 of P, which containsZ(P) = 〈ρ〉. Since the exponent of this subgroup
is p, it is isomorphic toE(p3).
For an arbitrary elementσb,c ∈ P, part 1 implies thatσb,cσσ−1

b,c ∈ 〈ρ ,σ〉 ⊂
E(σ ,σ ′), and similarly forσ ′ replacingσ . ThusE(σ ,σ ′) is a normal subgroup,
proving part 3.

⊓⊔
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Theorem 1.5.3.Assume that h≥ 1. Then the group P is an extraspecial group of
exponent p.

Proof. Sinceh ≥ 1, part 2 of Lemma 1.5.2 shows thatP is an extraspecial group.
Part 2 of Lemma 1.4.1 yields thatP has exponentp. ⊓⊔

We now show thatP is a central product ofh copies ofE(p3), i.e.,P is isomorphic
to the quotient of the direct product ofh copies ofE(p3), where the centers of each
copy have been identified. These subgroups ofP of orderp3 have been described in
part 3 of Lemma 1.5.2.

Corollary 1.5.4. Assume that h≥ 1. Then P is a central product of h copies of
E(p3).

Proof. Theorem III.13.7.(c) of [12] states thatP is the central product ofh extraspe-
cial groupsPi of orderp3. SinceP has exponentp, it follows that the groupsPi have
exponentp as well. ThereforePi ≃ E(p3). ⊓⊔

We describe the decomposition ofP as a central product from Corollary 1.5.4
explicitly; this description is in fact the proof given in [12, Theorem III.13.7.(c)].
The proof of part 2 of Lemma 1.5.2 shows thatε(c1,c2) defines a nondegenerate
symplectic pairing

W×W → Fp, (c1,c2) 7→ ε(c1,c2).

We may choose a basis(c1, . . . ,ch,c′1, . . . ,c
′
h) of W such that

ε(ci ,c
′
j) = δi, j ,

whereδi, j is the Kronecker function. In particular, it follows that〈c1, . . . ,ch〉 ⊂W is
a maximal isotropic subspace of the bilinear formε.

For everyi, choose elementsσi ,σ ′
i ∈P which map toci ,c′i , respectively, under the

quotient map from part 2 of Lemma 1.5.2. This corresponds to choosing an element
bi as in part 3 of Proposition 1.3.2 for eachi. Part 1 of Lemma 1.5.2 implies that
σi does not commute withσ ′

i , but commutes withσ j ,σ ′
j for every j 6= i. Therefore

Ei = 〈σi ,σ ′
i 〉 is isomorphic toE(p3) (part 3 of Lemma 1.5.2). It follows thatP is the

central product of the subgroupsEi .
We finish this section with a description of the maximal abelian subgroups ofP.

This will be used in Sect. 1.6 to obtain a decomposition of theJacobian ofCR.

Proposition 1.5.5.Let h≥ 1.

1. Every maximal abelian subgroupA of P is an elementary abelian group of order
ph+1, and is normal in P.

2. Let A ≃ (Z/pZ)h+1 be a maximal abelian subgroup of P. For any subgroup
A=Ap ≃ (Z/pZ)h ⊂A with Ap∩Z(P) = {1} there exist subgroups A1, . . . ,Ap−1

of A such that



18 Bouw, Ho, Malmskog, Scheidler, Srinivasan, and Vincent

A = Z(P)∪A1∪·· ·∪Ap,

Ai ≃ (Z/pZ)h, Ai ∩Z(P) = {1}, Ai ∩A j = {1} if i 6= j.

3. Any two subgroups A ofA of order ph which trivially intersect the center of P
are conjugate inside P.

Proof.

1. The statement that the maximal abelian subgroupsA of P have orderph+1 is
Theorem III.13.7.(e) of [12].

2. A maximal abelian subgroupA is the inverse image of a maximal isotropic
subspace ofW. SinceP has exponentp, we conclude thatA ≃ (Z/pZ)h+1 is
elementary abelian. Part 1 of Lemma 1.5.2 and the fact thatA is the inverse
image of a maximal isotropic subspace ofW imply thatA is a normal subgroup
of P. This proves part 1.
Let A ⊂ P be a maximal abelian subgroup. Without loss of generality, we may
assume thatA corresponds to the maximal isotropic subspace generated bythe
basis elementsc1, . . . ,ch of W as described above. In this case we haveA =
〈ρ ,σ1, . . . ,σh〉 whereσi maps toci under the map from part 2 of Lemma 1.5.2.
Define

Ap := 〈σ1, . . .σh〉.
This is a subgroup ofA of orderph such thatAp∩Z(P) = {1}.
We defineτ = σb,c′1+···+c′h

, whereb is some solution of the equation

bp−b= (c′1+ · · ·+ c′h)R(c
′
1+ · · ·+ c′h)

as specified in Remark 1.3.3. Let

Ai = τ iApτ−i , i = 1, . . . , p−1.

By part 2a of Proposition 1.2.1,Bc(X) is additive inc. This implies that

Bc′1+···+c′h
(X) =

h

∑
i=1

Bc′i
(X).

The choice of the basisci ,c′i of W, together with part 1 of Lemma 1.5.2 implies
therefore that

τσiτ−1 = ρ−ε(c′i ,ci )σi = ρε(ci ,c
′
i)σi = ρσi .

It follows thatAi ∩Z(P) = {1} andAi ∩A j = {1} if i 6= j. By counting, we see
that each non-identity element ofA is contained in exactly oneAi .

3. Let A,A′ be two subgroups ofA as in the statement of part 3. Without loss of
generality, we may assume thatA= Ap = 〈σ1, . . .σh〉, as in the proof of part 2.
ThenA′ = 〈ρ j1σ1 . . . ,ρ jhσh〉 for suitable j i ∈ Fp. Definec= ∑h

i=1 j ici ∈W and
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chooseb with bp−b= Bc(c)/2. As in the proof of part 2 it follows thatτ := σb,c

satisfiesτAτ−1 = A′.

⊓⊔

1.6 Decomposition of the Jacobian ofCR

In this section we decompose the Jacobian ofCR over the splitting fieldFq of the
polynomialE. This decomposition allows us to reduce the calculation of the zeta
function ofCR overFq to that of a certain quotient curve. This quotient curve is
computed in Sect. 1.7, and Sect. 1.8 combines these results to compute the zeta
function ofCR overFq.

The decomposition result (Proposition 1.6.3) we prove below is based on the
following general result of Kani–Rosen ([15, Theorem B]).

Theorem 1.6.1 (Kani-Rosen [15]).Let C be a smooth projective curve defined over
an algebraically closed field k, and G a (finite) subgroup ofAutk(C) such that G=
H1∪H2∪ . . .∪Ht , where the subgroups Hi ≤ G satisfy Hi ∩H j = {1} for i 6= j. Then
we have the isogeny relation

Jac(C)t−1× Jac(C/G)g ∼ Jac(C/H1)
h1 ×·· ·× Jac(C/Ht)

ht ,

where g= #G, hi = #Hi, andJacn = Jac×·· ·× Jac(n times).

We apply Theorem 1.6.1 to a maximal abelian subgroupA ⊂ P. Recall from
part 1 of Proposition 1.5.5 thatA is an elementary abelianp-group of orderph+1

which contains the centerZ(P) = 〈ρ〉 of P. Part 3 of Proposition 1.3.2 implies that
all automorphisms inA are defined overFq.

Recall from part part 2 of Proposition 1.5.5 the existence ofa decomposition

A = A0∪A1∪·· ·∪Ap, (1.16)

whereA0 = 〈ρ〉 is the center ofP and for i 6= 0 theAi are elementary abelianp-
groups of orderph.

Each groupAi defines a quotient curveCAi :=CR/Ai . Since all automorphisms in
Ai are defined overFq, it follows that the quotient curveCAi together with the natural
mapπAi : CR →CAi may also be defined overFq. The following lemma implies that
all curvesCAi are isomorphic overFq.

Lemma 1.6.2.LetA be a maximal abelian subgroup of P, and let A and A′ be two
subgroups ofA of order ph which have trivial intersection with the center of P.
Then the curves CR/A and CR/A′ are isomorphic overFq.

Proof. Part 3 of Proposition 1.5.5 states that the subgroupsA andA′ are conjugate
insideP. Namely, we haveA′ = τAτ−1 for an explicit elementτ ∈ P. The automor-
phismτ of CR induces an isomorphism
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τ : CR/A→CR/A′.

Sinceτ is defined overFq, this isomorphism is defined overFq as well. ⊓⊔

We writeJR := Jac(CR) for the Jacobian variety ofCR. SinceCR is defined over
Fq and has anFq-rational point, the Jacobian varietyJR is also defined overFq. The
mapπAi inducesFq-rational isogenies

πAi ,∗ : JR → Jac(CAi ), π∗
Ai

: Jac(CAi )→ JR. (1.17)

The element

εAi =
1
ph π∗

Ai
◦πAi,∗ ∈ End0(JR) := End(JR)⊗Q

is an idempotent ([15, Sect. 2]) and satisfies the property that εAi (JR) is isogenous
to Jac(CAi ). Note thatph is the degree of the mapπAi .

In the following result we use these idempotents to decompose JR. The same
strategy was also used in [10, Sect. 10] in the case thatp = 2. In that source, Van
der Geer and Van der Vlugt give a direct proof in their situation of the result of
Kani–Rosen (Theorem 1.6.1) that we apply here.

Proposition 1.6.3.There exists anFq-isogeny

JR ∼Fq Jac(CAp)
ph
.

Proof. We apply Theorem 1.6.1 to the decomposition (1.16) of a maximal abelian
subgroupA of P. This result shows the existence of ak-isogeny

Jp
R× Jac(CR/A )ph+1 ∼k Jac(CA0)

p×
p

∏
i=1

Jac(CAi )
ph
. (1.18)

The groupsA andA0 contain the Artin–Schreier elementρ ; hence the curves
CR/A andCA0 have genus zero (part 2 of Lemma 1.4.5). Therefore the Jacobians
of these curves are trivial and may be omitted from (1.18).

As before, letεAi ∈End(JR) denote the idempotent corresponding toAi . Theorem
2 of [15] states that the isogeny relation from (1.18) is equivalent to the relation

pId ∼ ph(
p

∑
i=1

εAi ) ∈ End0(JR).

Here, as defined on p. 312 of [15], the notationa ∼ b means thatχ(a) = χ(b) for
all virtual characters of End0(JR). Since End0(JR) is aQ-algebra, we may divide by
p on both sides of this relation. Applying Theorem 2 of [15] once more yields the
isogeny relation

JR ∼k

p

∏
i=1

Jac(CAi )
ph−1

. (1.19)
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We have already seen that the isogeniesπ∗
Ai

andπAi ,∗ are defined overFq. It follows
that the isogeny (1.19) is defined overFq as well (see also Remark 6 in Sect. 3 of
[15]). Since the curvesCAi , and hence also their Jacobians, are isomorphic (Lemma
1.6.2), the statement of the proposition follows. ⊓⊔

1.7 Quotients ofCR by elementary abelianp-groups

We consider again a maximal abelian subgroupA ≃ (Z/pZ)h+1 of P and choose
A ⊂ A with A ≃ (Z/pZ)h and A∩ Z(P) = {1}. In this section we compute an
Fq-model of the quotient curveCA = CR/A. Lemma 1.6.2 implies that theFq-
isomorphism class of the quotient curve does not depend on the choice of the sub-
groupA.

SinceA∩Z(P) = {1}, part 1 of Lemma 1.4.5 implies that the filtration of higher
ramification groups in the lower numbering ofA is

A= G0 = G1 ) G2 = {1},

so the Riemann–Hurwitz formula yields

2g(CR)−2= ph(p−1)−2= (2g(CA)−2)ph+2(ph−1).

We conclude thatg(CA) = (p−1)/2.
Proposition 1.5.5 implies that the elements ofA commute withρ , sinceρ ∈ Z(P).

It follows thatCA is an Artin–Schreier cover of the projective line branched at one
point. Artin–Schreier theory implies therefore thatCA may be given by an Artin–
Schreier equation

Yp−Y = fA(X),

where fA(X) is a polynomial of degree 2. Theorem 1.7.4 below implies thatthis
polynomial fA(X) is in fact of the formfA(X) = aAX2 for an explicit constantaA.
These curves are all isomorphic over the algebraically closed fieldk, but not overFq.
The following lemma describes the differentFq-models of the curvesYp−Y = eX2

for e∈ Fq.

Lemma 1.7.1.For e∈ Fq, define the curve De by the affine equation

Yp−Y = eX2. (1.20)

Two curves De1 and De2 as in (1.20) are isomorphic overFq if and only if e1/e2 is
the product of a square inF∗

q with an element ofF∗
p. In particular, overFq, any two

of these curves are isomorphic.

Proof. Let De1 andDe2 be curves of the form (1.20). Suppose there exists anFq-
isomorphismϕ : De1 → De2. We claim that there exists anFq-isomorphism which
sends∞ ∈ De1 to ∞ ∈ De2.
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We first consider the case thatp > 3, i.e.,g(Dei ) ≥ 2. In this case, Proposition
3.3 of [18] states that there exists an automorphismσ of De1 overFq such thatϕ ◦σ
sends the point∞ ∈ De1 to the point∞ ∈ De2. To prove the claim it suffices to show
thatσ may be defined overFq.

To prove this, we follow the proof of Proposition 3.3 of [18] and use the fact that
ϕ maps every point ofDe1 to a point ofDe2 with the same polar semigroup. Theorem
3.1.(a) of [18] implies that the only points ofDe1 with the same polar semigroup as
∞ are the pointsQi := (0, i) with i ∈ Fp. It follows thatϕ−1(∞) is either∞ or Qi for
somei ∈ Fp. In the former case, there is nothing to show. Ifϕ−1(∞) = Qi , we may
choose

σ(x,y) =

(
x

y(p+1)/2
,
iy−1

y

)
.

Note that this is an automorphism ofDe1 which maps∞ to Qi . Moreover,σ is
defined over the field of definition ofDe1, and we are done.

We now prove the claim in the case thatp = 3. In this case the curvesDei are
elliptic curves. The inverseϕ−1 : De2 → De1 of ϕ is also defined overFq. It follows
that Q := ϕ−1(∞) ∈ De1(Fq) is Fq-rational. Then the translationτQ−∞ : P 7→ P+
Q−∞ is defined overFq and sends the unique point∞ ∈ De1 to Q. Precomposingϕ
with τQ−∞ gives anFq-isomorphism which sends∞ ∈ De1 to ∞ ∈ De2.

Therefore, without loss of generality we letϕ : De1 →De2 be anFq-isomorphism
which sends the unique point ofDe1 at ∞ to the unique point ofDe2 at ∞. Any such
automorphism can be written asϕ(x,y) = (ν0x+ ν1,ν2y+ ν3) with νi ∈ Fq and
ν2ν0 6= 0. The condition thatϕ mapsDe1 to De2 is equivalent to

ν p
2 = ν2, ν2e1 = e2ν2

0 , (1.21)

0= 2e2ν0ν1, ν p
3 −ν3 = e2ν2

1 . (1.22)

It follows thatν1 = 0 andν2,ν3 ∈ Fp. The coefficiente2 is given by

e2 =
ν2e1

ν2
0

.

This proves the first assertion of the lemma. The second assertion is clear since any
element ofF

∗
q is a square inF

∗
q. ⊓⊔

We now compute anFq-model of the curveCR/A for A⊂P an elementary abelian
subgroup of cardinalityph with A∩Z(P) = {1}. We prove this by induction onh,
following Sect. 13 of [10]. The following proposition is thekey step in the inductive
argument. It is a corrected version of Proposition 13.5 of [10], which extends to odd
p Proposition 9.1 of [10] and is presented without proof. Indeed, the formula for
the coordinateV of the quotient curve given in Proposition 13.5 of [10] contains an
error that has been corrected here. We recall thatR(X) is an additive polynomial of
degreeph with leading coefficientah ∈ Fpr ⊆ Fq.

Proposition 1.7.2.Assume that h≥ 1, and let

σ(x,y) := σb,c(x,y) = (x+ c,y+b+Bc(x))
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be an automorphism of CR with c 6= 0 and b= Bc(c)/2. Then the quotient curve
CR/〈σ〉 is isomorphic overFq to the smooth projective curve given by an affine
equation

V p−V = f̃ (U) =UR̃(U), (1.23)

whereR̃(U) ∈ Fq[U ] is an additive polynomial of degree ph−1 with leading coeffi-
cient

ã=

{
ah

cp−1 if h 6= 1,
ah

2cp−1 if h = 1.

Proof. In the proofc is fixed, therefore we writeB(X) for Bc(X). We define new
coordinates

U = Xp− cp−1X, V =−Y+Ψ(X) =−Y+ γX2+
X
c

B(X), (1.24)

whereγ is defined by

γ =−B(c)
2c2 .

One easily checks thatU andV are invariant underσ . The invariance ofV underσ
is equivalent to the property

Ψ(X+ c)−Ψ(X) = B(X)+b.

Here we use the definition ofb asb= B(c)/2. SinceU andV generate a degree-p
subfield of the function field ofCR and the automorphismσ has orderp, U andV
generate the function field of the quotient curveCR/〈σ〉.

From the definition ofU andV above, one can see that the Artin–Schreier auto-
morphismρ induces an automorphism̃ρ(U,V) = (U,V −1) on the quotient curve
CR/〈σ〉. It follows that the quotient curve is also given by an Artin–Schreier equa-
tion, which we may write as

V p−V =−Yp+Y+Ψ p(X)−Ψ(X) =−XR(X)+Ψ p(X)−Ψ(X). (1.25)

It is clear that the right-hand side of (1.25) can be written as a polynomialf̃ (U) in
U , since it is invariant underσ by construction. Since the constant term ofΨ is zero,
the right-hand side has a zero atX = 0, so f̃ (U) ∈UFq[U ].

Recall that part 1 of Proposition 1.3.2 established

B(X)p−B(X) = cR(X)+XR(c). (1.26)

This implies

XR(X) =
X(B(X)p−B(X))

c
− X2R(c)

c
.

It follows that

−XR(X)+Ψ p(X)−Ψ(X) =
B(X)p

cp U + γ pX2p+X2
(

R(c)
c

− γ
)
. (1.27)
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Using (1.26) one computes

γ pX2p+X2
(

R(c)
c

− γ
)
= γ pU2− B(c)p

cp+1 XU.

Define

Θ(X) =
B(X)p

cp − B(c)p

cp+1 X.

SinceΘ is invariant underσ , we may writeΘ(X) = θ (U) as a polynomial inU .
Note thatθ (0) = 0 sinceΘ(0) = 0. The additivity of the polynomialsB andU in the
variableX imply that the polynomialθ is additive in the variableU . It follows that
we may writeθ (U)=∑h−1

i=0 µiU pi
. From (1.9), we deduce that the leading coefficient

of θ is

µh−1 =
bp

h−1

cp =
ah

cp−1 .

Altogether, we find

V p−V = f̃ (U) =U (θ (U)+ γ pU) .

SettingR̃(U) := θ (U)+ γ pU , we see that̃R(U) is an additive polynomial inU . The
statement about the leading coefficient ofR̃(U) follows from the definitions ofθ
andγ. ⊓⊔

Remark 1.7.3.We discuss a crucial difference between even and odd characteristic:
Proposition 1.7.2 is a statement about the automorphismsσb,c of orderp which are
not contained in the center ofP. Forp odd all elements ofP\Z(P) have orderp. This
is not true forp= 2, as we already noted in Remark 1.4.2. Indeed all extraspecial
2-groups contain elements of order 4. The precise structureof the extraspecial group
P in the case thatp= 2 can be found in Theorem 4.1 of [10]. The automorphisms
σb,c ∈ P\Z(P) of order 2 are easily recognized: they satisfyc 6= 0 butBc(c) = 0.
This observation considerably simplifies the computation in the proof of Proposition
1.7.2.

The distinction between elements of order 2 and 4 inP\Z(G) in characteristic
2 yields a decomposition of the polynomialE (Theorem 3.4 of [10]). There is no
analogous result in odd characteristic.

Recall from Sect. 1.5 that every maximal abelian subgroupA of P is the inverse
image of a maximal isotropic subspaceA of W. For any suchA , let {c1, . . . ,ch} be
a basis ofA as described prior to Proposition 1.5.5. Then every subgroup of A of
order ph that intersectsZ(P) trivially is generated by automorphisms of the form
{σb1,c1, . . . ,σbh,ch} wherebp

i −bi = ciR(ci) for 1≤ i ≤ h. In fact, there is a one-to-
one correspondence between such subgroups ofA and sets of elements{b1, . . . ,bh}
satisfyingbp

i −bi = ciR(ci). By Remark 1.3.3 the elements in all these sets are of
the formbi = Bci (ci)/2+ i with i ∈ Fp.

Theorem 1.7.4.Assume h≥ 0. Let A be a maximal abelian subgroup of P. Any
subgroup A⊂ A of order ph that intersects the center Z(P) of P trivially gives rise
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to an Fq-isomorphism of the quotient curveCA onto the smooth projective curve
given by the affine equation

Yp−Y = aA X2.

Here
aA =

ah

2 ∏
c∈A\{0}

c,

for h≥ 1, where we recall that ah is the leading coefficient of R andA is the maximal
isotropic subspace of W that is the image ofA under the quotient map P→W. For
h= 0, we let

aA = a0.

Proof. We prove by induction onh that there exists a subgroupA ⊂ A with A ≃
(Z/pZ)h andZ(P)∩A= {1} such that the quotient curveCA =CR/A is given over
Fq by the equation stated in the theorem. The statement of the theorem follows from
this using Lemma 1.6.2.

Forh= 0 the statement is true by definition.
Assume thath ≥ 1 and that the statement of the theorem holds for all addi-

tive polynomialsR(X) of degreeph−1. Fix a basis{c1,c2, . . . ,ch} for the image
of A in W. We may choosebh = Bch(ch)/2. As in Sect. 1.5, we writeσh(x,y) =
σbh,ch(x,y) = (x+ ch,y+bh +Bch(x)). Proposition 1.7.2 implies that the quotient
curveCh−1 :=CR/〈σh〉 is given by an Artin–Schreier equation

Yp
h−1−Yh−1 = Xh−1Rh−1(Xh−1),

whereRh−1 is an additive polynomial of degreeph−1.
SinceA is an abelian group, it follows thatAh−1 := A /〈σh〉 ≃ (Z/pZ)h is

a maximal abelian subgroup of the Sylowp-subgroupPh−1 of Aut0(Ch−1). The
definition of the coordinateXh−1 asXp− cp−1

h X in the proof of Proposition 1.7.2
implies thatAh−1 corresponds to the maximal isotropic subspace〈c1, . . . ,ch−1〉
of Wh−1 := W/〈ch,c′h〉, whereci = cp

i − cp−1
h ci and c′h ∈ W is an element with

ε(ci ,c′h) = δi,h as in Sect. 1.5.
The induction hypothesis implies that there exists a subgroupAh−1 ⊂ Ah−1 with

Ah−1 ≃ (Z/pZ)h−1 andAh−1∩Z(Ph−1) = {1} such that the quotientCh−1/Ah−1 is
given by

Yp
0 −Y0 = aAh−1X

2
0 .

We may choosebi satisfyingbp
i − bi = ciR(ci) for i = 1, . . . ,h− 1 such that the

images ofσb1,c1, . . . ,σbh−1,ch−1 in Ah−1 generateAh−1 (Remark 1.3.3). Putσi =σbi ,ci

for i = 1, . . . ,h−1. ThenA := 〈σ1, . . . ,σh〉 satisfies

CR/A≃Fq Ch−1/Ah−1.

This concludes the induction proof.
The statement aboutaA follows immediately from the formula for the leading

coefficient of the quotient curve given in Proposition 1.7.2. ⊓⊔
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1.8 The zeta function of the curveCR

In this section, we describe the zeta function of the curveCR over the splitting field
Fq of the polynomialE(X) defined in (1.2).

Let C be a curve defined over a finite fieldFps, and writeNn = #C(Fpsn) for the
number of points onC over any extensionFpsn of Fps. Recall that thezeta function
of C, defined as

ZC(T) = exp

(

∑
n≥1

NnTn

n

)
,

is a rational function with the following properties:

1. The zeta function may be written as

ZC(T) =
LC,Fps(T)

(1−T)(1− psT)
,

whereLC,Fps(T) ∈ Z[T] is a polynomial of degree 2g(C) with constant term 1.

2. WriteLC,Fps(T) = ∏2g
i=1(1−αiT) with αi ∈C. After suitably ordering theαi , we

have

α2g−i =
ps

αi
, |αi |= ps/2.

3. For eachn, we have

Nn = #C(Fpsn) = 1+ psn−
2g

∑
i=1

αn
i .

4. If

LC,Fps(T) =
2g

∏
i=1

(1−αiT)

as above, then for anyr ≥ 0, we have

LC,Fprs (T) =
2g

∏
i=1

(1−α r
i T).

The numeratorLC,Fps(T) of the zeta functionZC(T) over Fps is called theL-
polynomialof C/Fps. If the field is clear from the context, we sometimes omit it
from the notation and simply writeLC(T).

Recall that the Hasse–Weil bound asserts that

|#C(Fps)− (ps+1)| ≤ 2ps/2g(C).

A curveC/Fps is calledmaximalif #C(Fps) = ps+ 1+ 2ps/2g(C) andminimal if
#C(Fps) = ps+ 1− 2ps/2g(C). Since the number of points on a curve must be an
integer, ifC is a maximal curve, thensmust be even. Furthermore, using properties
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2 and 3 above, it is clear thatC is maximal ifα j = −ps/2 for each 1≤ j ≤ 2g(C),
andC is minimal if α j = ps/2 for each 1≤ j ≤ 2g(C).

Assume thats is even and thatFps is an extension ofFq. In the notation of Propo-
sition 1.2.6, we havews = dimFp W = 2h (Corollary 1.2.3). Since the curveCR has
genusph(p−1)/2, Proposition 1.2.6 implies thatCR is either maximal or minimal
in this case. Moreover, one easily sees that if eithers is odd orFps does not contain
Fq, thenCR is neither maximal nor minimal. The following proposition asserts that
this almost determines the zeta function ofCR overFq. The statement is an extension
to odd characteristic of Theorems 10.1 and 10.2 of [10]. Notethat the statement for
odd characteristic is simpler than that for characteristic2.

Proposition 1.8.1.LetFps be an extension ofFq, the splitting field of E(X). Write
g= ph(p−1)/2 for the genus of CR.

1. If s is even, the L-polynomial of CR is

LCR(T) = (1± ps/2T)2g.

2. If s is odd, the L-polynomial of CR is

LCR(T) = (1± psT2)g.

Proof.

1. Letα1, . . . ,α2g be the reciprocal zeros of theL-polynomial ofC overFps, where
we order theαi such thatαiα2g−i = ps.
We first assume thats is even. SinceFps is an extension ofFq, we have

N1 = #CR(Fps) = 1+ ps±2gps/2 = 1+ ps−
2g

∑
i=1

αi .

Since|αi |= ps/2 we conclude that

α1 = · · ·= α2g =±ps/2.

This proves part 1.
2. We now assume thats is odd. Proposition 1.2.6 implies that

N1 = #CR(Fps) = 1+ ps= 1+ ps−
2g

∑
i=1

αi . (1.28)

Since the reciprocal roots of theL-polynomial ofC overFp2s areα2
j , we conclude

from part 1 that eitherα2
j = ps or α2

j =−ps for all j.

If α2
j = −ps for all j, thenα j = ±ips/2, where i is a primitive 4th root of unity.

It follows thatα2g− j = ps/α j =−α j . Hence

(1−α jT)(1−α2g− jT) = 1+ psT2.
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Assume now thatα2
j = ps for all j. In this case we haveα j =±ps/2 andα2g− j =

ps/α j = α j . Let m= #{1≤ j ≤ g : α j = ps/2}. It follows from (1.28) that

0= #CR(Fps)− (ps+1) = ps/2(−2m+2(g−m)).

We conclude that 2g = 4m, i.e., m= g/2 (in particular,g is even). For theL-
polynomial ofCR overFps we find

LCR(T) = (1− psT2)g,

as claimed in part 2.

⊓⊔
Remark 1.8.2.

1. The proof of part 2 of Proposition 1.8.1 shows that the caseLCR(T) = (1− psT2)g

can only occur wheng is even, i.e., ifp≡ 1 (mod4).
2. Assume thats is even. Thenα j = ps/2 orα j =−ps/2 for all 1≤ j ≤ 2g, and there-

foreCR is either minimal or maximal. IfCR is minimal overFps, eachα j = ps/2.
The curveCR therefore remains minimal over each extension fieldFps f . If CR is

maximal overFps, eachα j = −ps/2. The reciprocal roots of theL-polynomial

overFps f areα f
j = (−1) f ps f/2. We conclude thatCR is maximal overFps f if f

is odd and minimal iff is even.

To determine the zeta function ofCR, it remains to decide when the different
cases occur. The following result, which is an immediate corollary of Proposition
1.6.3, reduces this problem to the caseh= 0.

Corollary 1.8.3. Let A≃ (Z/pZ)h ⊂ P be a subgroup with A∩Z(P) = {0}. Write
CA =CR/A. Then

LCR,Fq(T) = LCA,Fq
(T)ph

.

Proof. This is an immediate consequence of Proposition 1.6.3, since abelian vari-
eties which are isogenous overFq have the same zeta function overFq. This follows
for example from the cohomological description of the zeta function in Sect. 1 of
[16]. ⊓⊔

Recall from Theorem 1.7.4 that the curveCA from Corollary 1.8.3 is a curve of
genus(p−1)/2 given by an affine equation of the form

Yp−Y = aX2,

for somea ∈ F∗
q. This corresponds to the caseh = 0. All curves of this form are

isomorphic overFq, and the differentFq-models are described in Lemma 1.7.1. The
next result determines theL-polynomials of the curvesCA. In the literature one finds
many papers discussing the zeta function of similar curves using Gauss sums (for
example [6], [16], [27].) We give a self-contained treatment here based on the results
of Sect. 1.2.
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Theorem 1.8.4.Consider the curve CR over some extension ofFq and put g=
g(CR). For h≥ 0 we put a= aA with aA as given in Theorem 1.7.4 for some choice
of A .

1. If p≡ 1 (mod4), then the L-polynomial of CR overFps is given by

LCR,Fps(T) =





(1− psT2)g if s is odd,

(1− ps/2T)2g if s is even anda is a square inF∗
ps,

(1+ ps/2T)2g if s is even anda is a nonsquare inF∗
ps.

2. If p≡ 3 (mod4), then the L-polynomial of CR overFps is given by

LCR,Fps(T) =





(1+ psT2)g if s is odd,

(1− ps/2T)2g if s≡ 0 (mod4) anda is a square inF∗
ps,

(1+ ps/2T)2g if s≡ 0 (mod4) anda is a nonsquare inF∗
ps,

(1+ ps/2T)2g if s≡ 2 (mod4) anda is a square inF∗
ps,

(1− ps/2T)2g if s≡ 2 (mod4) anda is a nonsquare inF∗
ps.

Proof. Corollary 1.8.3 implies that it suffices to consider the caseh= 0. To prove
the theorem we may therefore assume thatR(X) = aX. We label the corresponding
curveDa as we do in Lemma 1.7.1.

Case 1:The elementa is a square inF∗
ps.

Then Lemma 1.7.1 implies thatDa is isomorphic overFq to the curveD1 given
by the affine equationYp−Y = X2. SinceD1 is defined overFp, we compute its
L-polynomial overFp. The argument that we use here proceeds in the same manner
as in the proof of Proposition 1.2.6. However, since both thepolynomialR(X) and
the field are very simple, we do not need to consider the quadric Q considered in
that proof explicitly.

As in the proof of Proposition 1.8.1, it suffices to determinethe numberN2 of
Fp2-rational points of the curveD1. We havep+1 points withx∈ {0,∞}. As in the
proof of Proposition 1.2.6, theFp2-points withx 6= 0,∞ correspond to squaresz= x2

with TrFp2/Fp(z) = 0. Every such elementz yields exactly 2p rational points. Since

TrFp2/Fp(z) = z+ zp, the nonzero elements of trace zero are exactly the elements

with zp−1 = −1. Choosing an elementζ ∈ F∗
p2 of order 2(p−1), we conclude that

the nonzero elements with trace zero are

ker(TrFp2/Fp)\ {0}= {ζ 2 j+1 : j = 0, . . . , p−2}.

First suppose thatp≡ 3 (mod 4). Then all the elements of ker(TrFp2/Fp) are squares

in Fp2, so

#D1(Fp2) = 1+ p+(p−1)2p= 1+ p2+(p−1)p.
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As in the proof of Proposition 1.8.1 it follows thatα j = ±ip1/2 = −α2g− j for 1≤
j ≤ g after suitable relabeling. Ifs is even thenαs

j = αs
2g− j = isps/2 and

(1−αs
j T)(1−αs

2g− jT) = 1−2isps/2T+ psT2 =

{
(1− ps/2T)2 if s≡ 0 (mod4),

(1+ ps/2T)2 if s≡ 2 (mod4).

If s is odd thenαs
j =±isps/2 =−αs

2g− j , and therefore

(1−αs
j T)(1−αs

2g− jT) = 1+ psT2.

Now assume thatp≡ 1 (mod 4). Then none of the elements of ker(TrFp2/Fp) are

squares inFp2, and we conclude that

#D1(Fp2) = 1+ p= 1+ p2− (p−1)p.

Again as in the proof of Proposition 1.8.1 it follows that, upto relabeling,α j =

ps/2 = α2g− j for 1≤ j ≤ g/2, andα j = −ps/2 = α2g− j for g/2+1≤ j ≤ g. (Note
thatg is even sincep≡ 1 (mod4).) We may therefore relabel again to ensure that
α j = ps/2 = −α2g− j , for 1≤ j ≤ g. With this new labeling, ifs is even, thenαs

j =

αs
2g− j = ps/2, and

(1−αs
j T)(1−αs

j+g/2T) = (1− ps/2T)2,

and ifs is odd thenαs
j = ps/2 =−α2g− j and

(1−αs
j T)(1−αs

j+g/2T) = (1− ps/2T)(1+ ps/2T) = (1− psT2).

This concludes Case 1.

Case 2:The elementa is a nonsquare inF∗
ps ands is odd.

Then the set{aβ 2 : β ∈ F∗
ps} contains(ps−1)/2 distinct elements, all of which

are nonsquares. As a consequence, this set contains all nonsquares ofFps. Forsodd,
the nonsquares inF∗

p are also nonsquares inF∗
ps, and therefore the set{aβ 2 : β ∈

F∗
ps} contains an element inF∗

p. (In fact, this set contains all the nonsquares inFp.)
Lemma 1.7.1 now implies that the curveDa is isomorphic overFq to the curveD1,
and the desired result follows therefore from Case 1.

Case 3:The elementa is a nonsquare inF∗
ps ands is even.

Here, we considerM := ker(TrFps/Fp) = {z∈ Fps : TrFps/Fp(z) = 0}. Since the

trace is surjective andFp-linear, the cardinality ofM is ps−1. We may writeM as a
disjoint union

M = {0}∪Msq∪Mnsq,

whereMsq (resp.Mnsq) are the elements ofM \ {0} which are squares (resp. non-
squares) inF∗

ps.
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As in the proof of Case 1 we have

#D1(Fps) = 1+ p+2p#Msq,

and a similar argument gives

#Da(Fps) = 1+ p+2p#Mnsq.

From the expression for #D1(Fps) computed in Case 1, it follows that

#Msq=

{
ps−1−1

2 + (p−1)
2 p(s−2)/2 if p≡ 3 (mod4) ands≡ 2 (mod4),

ps−1−1
2 − (p−1)

2 p(s−2)/2 if p≡ 1 (mod4) or s≡ 0 (mod4).

Since #Mnsq= #M−1−#Msq= ps−1−1−#Msq, we conclude that

#Da(Fps) =

{
1+ ps− (p−1)ps/2 if p≡ 3 (mod4) ands≡ 2 (mod4),

1+ ps+(p−1)ps/2 if p≡ 1 (mod4) or s≡ 0 (mod4).

The expressions for theL-polynomial now follow as in the previous cases. ⊓⊔

We finish this section by proving that all curvesCR are supersingular. This result
is not new. Our proof just adds some details to Theorem 13.7 in[10]. An alternative
proof is given by Blache ([2, Corollary 3.7 (ii)]).

Proposition 1.8.5.The curve CR is supersingular, i.e., its Jacobian is isogenous over
k= Fq to a product of supersingular elliptic curves.

Proof. The curveCR is supersingular if and only if all the slopes of the Newton
polygon of theL-polynomial are 1/2. (This follows for example from [26, Theorem
2].) The statement of the proposition follows therefore from Theorem 1.8.4 . ⊓⊔

The reasoning of Van der Geer and Van der Vlugt for Theorem 13.7 of [10] is
slightly different, since they do not compute theL-polynomial ofCR overFq. They
argue that the Jacobian varietyJR of CR is isogenous overk to ph copies of the
Jacobian of the curveD1 with equationYp−Y = X2. (This is a weaker version of
Proposition 1.6.3.) They then use the fact that the curveD1 is supersingular.

1.9 Examples

By work of Ihara [13], Stichtenoth and Xing [24], and Fuhrmann and Torres [8], we
know that forq a power of a prime, a curveC which is maximal overFq2 satisfies

g(C) ∈
[
0,

(q−1)2

4

]
∪
{

q(q−1)
2

}
.
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Moreover, the Hermite curves are the only maximal curves of genus(q(q−1))/2
[20].

Recall from Sect. 1.8 that a curveC is maximal overFp2s if and only if its L-

polynomial satisfiesLC,Fp2s = (1+ p2sT)2g(C). In our setting, Theorem 1.8.4 shows

that for a curveCR of the type considered in this paper anda defined as in Theorem
1.8.4, ifFps contains the splitting fieldFq of E(X), thenCR is maximal overFps if
and only if one of the following holds:

• s is even,a is a nonsquare inF∗
q, andp≡ 1 (mod4),

• s≡ 0 (mod4), a is a nonsquare inF∗
q, andp≡ 3 (mod4), or

• s≡ 2 (mod4), a is a square inF∗
q, andp≡ 3 (mod4).

In each case the negation of the condition ona guarantees thatCR is a minimal curve
overFps.

In light of these facts, the only difficulty in generating examples of maximal
and minimal curves lies in computing suitable elementsa. In this section we present
certain cases in which sucha can be computed. We start with a discussion of the case
h= 0, and then turn our attention toR(X) = Xph

. For more results along the same
lines we refer to [3] and [1]. In [4] it is shown that all curvesCR that are maximal
over the fieldFp2n are quotients of the Hermite curveHpn with affine equationypn −
y= xpn+1.

At the end of this section we briefly investigate isomorphisms between certain
curvesCR and curves with defining equations

Yp+Y = Xph+1.

Throughout this section, we letHp denote the Hermite curve which is defined by
the affine equation

Yp+Y = Xp+1. (1.29)

As mentioned above, this is a maximal curve overFp2. The curveYp+Y = X2 is a
quotient of the Hermite curveHp, and therefore this curve is maximal overFp2. The
following lemma determines when the twists

Yp−Y = aX2

of this curve are maximal. A similar result can also be found in Lemma 4.1 of [3].

Lemma 1.9.1.Let R(X) = aX ∈ Fp2s[X]. Then CR is maximal overFp2s if and only
if one of the following conditions holds:

1. p≡ 1 (mod4) and a∈ F∗
p2s is a nonsquare,

2. p≡ 3 (mod4), s is even, and a∈ F∗
p2s is a nonsquare, or

3. p≡ 3 (mod4), s is odd, and a∈ F∗
p2s is a square.

Proof. In this case we haveE(X) = 2aX, henceFp2s automatically contains the
splitting field ofE. The lemma therefore follows from Theorem 1.8.4. ⊓⊔
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Remark 1.9.2.The database manYPoints ([9]) compiles records of curves with
many points. The following two maximal curves fall in the range of genus and
cardinality covered in the database, and have now been included in manYPoints.
Previously, the database did not state any lower bound for the maximum number of
points of a curve of genus 5 overF114 and a curve of genus 9 overF194.

1. In the case whereh= 0, p= 11 ands= 4, leta∈ F∗
114 be a nonsquare. Then the

curve
Y11−Y = aX2

is maximal overF114 and of genus 5.
2. In the case whereh= 0, p= 19 ands= 4, leta∈ F194 be a nonsquare. Then the

curve
Y19−Y = aX2

is maximal overF194 and of genus 9.

The following proposition gives an example of a class of maximal curves with
small genus compared to the size of their field of definition, in contrast to the Her-
mite curves which have large genus. A similar result forp = 2 can be found in
Theorem 7.4 of [10]. A similar result withp replaced by an arbitrary prime power
can be found in Proposition 4.6 of [3].

Proposition 1.9.3.Let h≥ 1.

1. Let R(X) = Xph
. Then E(X) = Xp2h

+X, which has splitting fieldFq = Fp4h. The
curve CR is minimal overFq.

2. Let ah ∈ F∗
p2h be an element with ap

h−1
h = −1 and define R(X) = ahXph

. Then

E(X) = aph

h (Xp2h −X), which has splitting fieldFq = Fp2h. The curve CR is max-
imal overFq.

Proof. We first prove the statement about the splitting field ofE(X) for both cases.

Consider the additive polynomialR(X) = ahXph ∈ Fps[X] with h ≥ 1. Then (1.2)
shows that

E(X) = aph

h Xp2h
+ahX.

If ah = 1, thenE has splitting fieldFq = Fp4h. If ah ∈ F∗
p2h satisfiesaph−1

h = −1,

thenE(X) = aph

h (Xp2h −X), which has splitting fieldFq = Fp2h. In both cases, we
conclude from the explicit expression ofE that

W = {c∈ Fp : cp2h
=−a1−ph

h c}.

For everyc∈W, the formulas (1.7) and (1.8) imply that

Bc(X) =−
h−1

∑
i=0

api

h cph+i
Xpi

.
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We first consider the case whereah = 1. Choose an elementc∈W\{0}, i.e.,cp2h
=

−c, and define
A= {cζ : ζ ∈ Fph} ⊂W.

For any twoζ j , ζk in Fph, we have

Bcζ j
(cζk) =−

h−1

∑
i=0

ζ ph+i

j cph+i+pi
ζ pi

k =−
h−1

∑
i=0

ζ pi

j cph+i+pi
ζ ph+i

k = Bcζk
(cζ j),

sinceζ ph
= ζ for anyζ ∈ Fph. Therefore the pairing from part 1 of Lemma 1.5.2

satisfies

ε(cζ j ,cζk) = Bcζ j
(cζk)−Bcζk

(cζ j) = 0 for any pair(cζ j ,cζk) ∈ A
2
.

We conclude thatA ⊂ W is a maximal isotropic subspace. WriteA ⊂ P for the
corresponding maximal abelian subgroup ofP. Recall the constant from Theorem
1.7.4,

aA =
ah

2 ∏
γ∈A\{0}

γ,

whenh≥ 1. Here the leading coefficientah of R(X) is 1. The definition ofA implies
that

∏
γ∈A\{0}

γ = cph−1 ∏
ζ∈F∗

ph

ζ =−cph−1.

We conclude thataA = −cph−1/2 is a square inF∗
q, since−1/2 is a square in

F∗
p2 ⊂ F∗

q. Theorem 1.8.4 now yields

LCR,Fq(T) = (1−√
qT)2g.

It follows thatCR is minimal overFq.

We now assume thatah ∈ F∗
p2h satisfiesaph

h =−ah. In this case the splitting field

of E(X) is Fq = Fp2h as shown earlier. Choose a primitive(p2h−1)-st root of unity

ζ . Then we may writeah = ζ (2 j+1)(ph+1)/2 for some j. It follows thatah ∈ F∗
q is a

square if and only if(ph+1)/2 is even. This is equivalent top≡ 3 (mod4) andh
odd.

We chooseA= Fph ⊂W = Fp2h. For everyc,c′ ∈ A, we have

Bc(c
′) =−

h−1

∑
i=0

(ahcc′)pi
= Bc′(c).

As in the proof of part 1, we conclude thatA is a maximal isotropic subspace for the
pairingε from part 1 of Lemma 1.5.2. Since
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∏
c∈A\{0}

c=−1,

we conclude thataA is equivalent toah modulo squares inF∗
q. (The argument is

similar to that in the proof of part 1.) We conclude thataA is a square inF∗
q if and

only of p ≡ 3 (mod4) andh is odd. Theorem 1.8.4 implies thatCR is a maximal
curve overFq in each of these cases. This proves part 2. ⊓⊔
Remark 1.9.4.In their follow-up paper [11] to [10], Van der Geer and Van derVlugt
constructed further examples of maximal curves as a fiber product of the curvesCR.
We have not considered this construction in the case of odd characteristic. We leave
this as a subject for future research.

Example 1.9.5.

1. We consider the Hermite curveHp given in (1.29), and the curveCR given by

Yp−Y = Xp+1.

We claim that the curvesHp andCR are not isomorphic overFp2. To see this, we
show that #CR(Fp2) = 1+ p 6= 1+ p3 = #Hp(Fp2). This clearly implies that the
two curves are not isomorphic overFp2.
We note that

ψ : F∗
p2 → F∗

p2, x 7→ x1+p

is the restriction of the norm onFp2/Fp, so the image ofψ is F∗
p. It follows that

TrFp2/Fp(x
1+p) = 2x1+p 6= 0 for all x∈ F∗

p2.

We conclude that theFp2-rational points ofCR are thep points withx=0 together
with the unique point∞. This proves the claim. (Exercise 6.7 in [23] asks to prove
thatHp andCR are isomorphic overFp2 if p≡ 1 (mod4). The above calculation
shows that this does not hold.)
However, the Hermite curveHp is isomorphic overFp2 to the curve given by

CR′ : Yp−Y = a1Xp+1,

wherea1 ∈ Fp2 satisfiesap−1
1 = −1. The isomorphism is given byψ : CR′ →

Hp, (x,y) 7→ (x,ap
1y). This conforms with part 2 of Proposition 1.9.3.

2. Let ah ∈ F∗
p2h be an element withaph

h = −ah as in part 2 of Proposition 1.9.3.

Write R(X) = ahXph
. Thenψ : (x,y) 7→ (x,ap2h−1

h y) defines an isomorphism be-
tweenCR and the curve given by

Yp+Y = Xph+1.

Part 2 of Proposition 1.9.3 therefore implies that this curve is maximal overFp2h.
This can also be shown directly, for example using Proposition 6.4.1 of [23].
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14. Joly, J.R.:Équations et variétés algébriques sur un corps fini. Enseignement Math. (2)19,
1–117 (1973)

15. Kani, E., Rosen, M.: Idempotent relations and factors ofJacobians. Math. Ann.284(2), 307–
327 (1989)

16. Katz, N.M.: Crystalline cohomology, Dieudonné modules, and Jacobi sums. In: Automorphic
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